Difference between revisions of "MAT1224"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Began filling in table)
 
(66 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
The textbook for this course is  
 
The textbook for this course is  
[https://openstax.org/details/calculus-volume-1 Calculus (Volume 1) by Gilbert Strang, Edwin Herman, et al.]
+
[https://openstax.org/details/books/calculus-volume-2 Calculus (Volume 2) by Gilbert Strang, Edwin Herman, et al.]
  
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
Line 24: Line 24:
 
||
 
||
  
 +
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 +
* [[Chain Rule|The Chain Rule]] <!-- 1214-3.6 -->
 
* [[Antiderivatives]] <!-- 1214-4.10 -->  
 
* [[Antiderivatives]] <!-- 1214-4.10 -->  
 
* [[The Definite Integral]] <!-- 1214-5.2 -->
 
* [[The Definite Integral]] <!-- 1214-5.2 -->
Line 29: Line 31:
 
||
 
||
 
*  
 
*  
* Evaluate definite integrals using the Fundamental Theorem of Calculus
+
* Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
* Interpret the definite integral as the signed area under the graph of a function.
+
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 +
* Explain the relationship between differentiation and integration.
  
 
|-
 
|-
  
  
|Week&nbsp;1/2    
+
|Week&nbsp;1   
  
 
||
 
||
Line 43: Line 46:
 
||
 
||
 
    
 
    
 
 
[[Integration by Substitution]]  
 
[[Integration by Substitution]]  
  
 
||
 
||
  
 
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
+
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[Antiderivatives]] <!-- 1214-4.10 -->
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[The Definite Integral]] <!-- 1214-5.2 -->
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073-R) -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
 
  
 
||
 
||
  
 +
* Recognize when to use integration by substitution.
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate definite integrals.
 
* Use substitution to evaluate definite integrals.
Line 63: Line 65:
  
  
|Week&nbsp;3
+
|Week&nbsp;2
  
 
||
 
||
  
<div style="text-align: center;">1.2</div>
+
<div style="text-align: center;">2.1</div>
  
 
||
 
||
 
    
 
    
 
[[Area between Curves]]  
 
[[Area between Curves]]  
 
  
 
||
 
||
  
* [[Toolkit Functions|Graphs of elementary functions, including points of intersection.]] <!-- 1073-Mod 1.2 -->
+
* [[Toolkit Functions|Graphing Elementary Functions]] <!-- 1073-Mod 1.2 -->
* [[Antiderivatives]] <!-- 1214-4.10 -->  
+
* [[The Definite Integral]] <!-- 1214-5.2 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Find the area of plane regions bounded by the graphs of functions.
+
* Determine the area of a region between two curves by integrating with respect to the independent variable.
 +
* Find the area of a compound region.
 +
* Determine the area of a region between two curves by integrating with respect to the dependent variable.
  
 
|-
 
|-
  
  
|Week&nbsp;3/4 
+
|Week&nbsp;2
  
 
||
 
||
Line 98: Line 103:
 
||
 
||
  
* [[Toolkit Functions| Sketch the graphs of elementary functions]] <!-- 1073-Mod 1.2 -->
+
* [[Areas of basic shapes]] <!-- Grades 6-12 -->
* '''[[Areas of basic Shapes]]''' <!-- Grades 6-12 -->
+
* [[Volume of a cylinder]] <!-- Grades 6-12 -->
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Find the volume of solid regions with known cross-sectional area.
+
* Determine the volume of a solid by integrating a cross-section (the slicing method).
 
+
* Find the volume of a solid of revolution using the disk method.
||
+
* Find the volume of a solid of revolution with a cavity using the washer method.
  
  
Line 112: Line 119:
  
  
|Week&nbsp;
+
|Week&nbsp;3
  
 
||
 
||
Line 120: Line 127:
 
||
 
||
 
    
 
    
 
+
[[Volumes of Revolution, Cylindrical Shells]]  
[[The Shell Method]]
 
 
 
||
 
 
 
* [[Toolkit Functions| Sketch the graphs of elementary functions]] <!-- 1073-Mod 1.2 -->
 
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
 
  
 
||
 
||
  
* Find the volume of solid regions obtained by revolving a plane region about a line.
+
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
 +
* [[Determining Volumes by Slicing]] <!-- 1224-2.2 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
 
+
* Calculate the volume of a solid of revolution by using the method of cylindrical shells.
 +
* Compare the different methods for calculating a volume of revolution.
  
 
|-
 
|-
  
  
|Week&nbsp;4/5
+
|Week&nbsp;3
 
 
 
||
 
||
  
Line 147: Line 151:
 
||
 
||
 
    
 
    
 
 
[[Arc Length and Surface Area]]  
 
[[Arc Length and Surface Area]]  
  
 
||
 
||
  
* [[Toolkit Functions| Sketch the graphs of elementary functions]] <!-- 1073-Mod 1.2 -->
 
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
 
 
||
 
 
* Find the arc length of a plane curve
 
* The area of the surface obtained by revolving a curve about one of the coordinate axes.
 
||
 
 
 
|-
 
 
 
|Week&nbsp;5
 
 
||
 
 
<div style="text-align: center;">3.3</div>
 
 
||
 
 
 
 
[[Differentiation Rules]]
 
 
||
 
 
* [[Simplifying Radicals|Radical & Rational Exponents]] <!-- 1073-Mod.R -->
 
* [[Simplifying Exponents|Re-write negative exponents]] <!-- 1073-Mod.R -->
 
 
||
 
 
* State the constant, constant multiple, and power rules.
 
* Apply the sum and difference rules to combine derivatives.
 
* Use the product rule for finding the derivative of a product of functions.
 
* Use the quotient rule for finding the derivative of a quotient of functions.
 
* Extend the power rule to functions with negative exponents.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
 
||
 
 
 
|-
 
 
 
|Week&nbsp;5/6
 
 
||
 
 
<div style="text-align: center;">3.4</div>
 
 
||
 
 
 
 
[[Derivatives_Rates_of_Change|Derivatives as Rates of Change]]
 
 
||
 
 
* [[Functions|Function evaluation at a value]] <!-- 1073-Mod 1.1 -->
 
* [[Solving Equations|Solving an algebraic equation]] <!-- 1073-Mod.R -->
 
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Determine a new value of a quantity from the old value and the amount of change.
+
* Determine the length of a plane curve between two points.
* Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
+
* Find the surface area of a solid of revolution.
* Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
 
* Predict the future population from the present value and the population growth rate.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
 
 
||
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;6
+
|Week&nbsp;4
  
 
||
 
||
  
<div style="text-align: center;">3.5</div>
+
<div style="text-align: center;">2.5</div>
  
 
||
 
||
 
    
 
    
 
+
[[Physical Applications]]
[[Derivatives_Trigonometric_Functions|Derivatives of the Trigonometric Functions]]
 
  
 
||
 
||
  
* [[Trigonometric identities]] <!-- 1093-3.4 -->
+
* [[Areas of basic shapes]] <!-- Grades 6-12 -->
* [[Trigonometric Functions| Graphs of the Trigonometric Functions]] <!-- 1093-3.1 -->
+
* [[Volume of a cylinder]] <!-- Grades 6-12 -->
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[Basic Physics (Mass, Force, Work, Newton's Second Law, Hooke's Law)]] <!-- Grades 6-12 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Find the derivatives of the sine and cosine function.
+
* Determine the mass of a one-dimensional object from its linear density function.
* Find the derivatives of the standard trigonometric functions.
+
* Determine the mass of a two-dimensional circular object from its radial density function.
* Calculate the higher-order derivatives of the sine and cosine.
+
* Calculate the work done by a variable force acting along a line.
 
+
* Calculate the work done in stretching/compressing a spring.
||
+
* Calculate the work done in lifting a rope/cable.
 +
* Calculate the work done in pumping a liquid from one height to another.
 +
* Find the hydrostatic force against a submerged vertical plate.
  
  
Line 256: Line 199:
  
  
|Week&nbsp;6/7
+
|Week&nbsp;5
 
 
||
 
  
<div style="text-align: center;">3.6</div>
 
 
||
 
||
 
 
  
[[Chain_Rule|The Chain Rule]]
+
<div style="text-align: center;">2.6</div>
  
||
+
||  
  
* [[Composition of Functions]] <!-- 1073-7 -->
+
[[Moments and Center of Mass]]
* [[Trigonometric Equations|Solve trigonometric equations]] <!-- 1093-3.3 -->
 
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
 
  
 
||
 
||
  
* State the chain rule for the composition of two functions.
+
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
* Apply the chain rule together with the power rule.
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
* Recognize and apply the chain rule for a composition of three or more functions.
 
* Use interchangeably the Newton and Leibniz Notation for the Chain Rule.
 
  
 
||
 
||
  
 +
* Find the center of mass of objects distributed along a line.
 +
* Find the center of mass of objects distributed in a plane.
 +
* Locate the center of mass of a thin plate.
 +
* Use symmetry to help locate the centroid of a thin plate.
  
  
Line 287: Line 226:
  
  
|Week&nbsp;6
+
|Week&nbsp;5-6
  
 
||
 
||
  
<div style="text-align: center;">3.7</div>
+
<div style="text-align: center;">3.1</div>
  
||
+
||
 
 
  
[[Derivatives_Inverse_Functions|Derivatives of Inverse Functions]]
+
[[Integration by Parts]]
  
 
||
 
||
  
* [[Inverse Functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
 
* [[Inverse Functions]] <!-- 1073-7 -->
 
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]] <!-- 1093-3.1 -->
 
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 +
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* State the Inverse Function Theorem for Derivatives.
+
* Recognize when to use integration by parts.
* Apply the Inverse Function Theorem to find the derivative of a function at a point given its inverse and a point on its graph.
+
* Use the integration-by-parts formula to evaluate indefinite integrals.
* Derivatives of the inverse trigonometric functions.
+
* Use the integration-by-parts formula to evaluate definite integrals.
 
+
* Use the tabular method to perform integration by parts.
 +
* Solve problems involving applications of integration using integration by parts.
  
  
Line 316: Line 255:
  
  
|Week&nbsp;6/7
+
|Week&nbsp;6  
  
 
||
 
||
  
<div style="text-align: center;">3.8</div>
+
<div style="text-align: center;">3.2</div>
  
||
+
||  
 
 
  
[[Implicit Differentiation]]
+
[[Trigonometric Integrals]]
  
 
||
 
||
  
* '''[[Implicit and explicit equations]]''' <!-- DNE (recommend 1073-7) -->
+
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* [[Linear Equations|Linear Functions and Slope]] <!-- 1073-Mod.R -->
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
* [[Functions|Function evaluation]] <!-- 1073-Mod 1.1 -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 +
* [[Integration by Parts]] <!-- 1224-3.1 -->
  
 
||
 
||
  
* Assuming, for example, y is implicitly a function of x, find the derivative of y with respect to x.
+
* Evaluate integrals involving products and powers of sin(x) and cos(x).
* Assuming, for example, y is implicitly a function of x, and given an equation relating y to x, find the derivative of y with respect to x.
+
* Evaluate integrals involving products and powers of sec(x) and tan(x).
* Find the equation of a line tangent to an implicitly defined curve at a point.
+
* Evaluate integrals involving products of sin(ax), sin(bx), cos(ax), and cos(bx).
 +
* Solve problems involving applications of integration using trigonometric integrals.
  
  
Line 344: Line 284:
  
  
|Week&nbsp;7
+
|Week&nbsp;6-7  
  
 
||
 
||
  
<div style="text-align: center;">3.9</div>
+
<div style="text-align: center;">3.3</div>
  
||
+
||
 
 
  
[[Derivatives of Exponential and Logarithmic Functions]]
+
[[Trigonometric Substitution]]
  
 
||
 
||
  
* [[Logarithmic Functions|Properties of logarithms]] <!-- 1073-8 -->
+
* [[Completing the Square]] <!-- 1073-Mod 3.2-->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
 
 
 
||
 
 
 
* Find the derivative of functions that involve exponential functions.
 
* Find the derivative of functions that involve logarithmic functions.
 
* Use logarithmic differentiation to find the derivative of functions containing combinations of powers, products, and quotients.
 
 
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;7/8 
 
 
 
||
 
 
 
<div style="text-align: center;">4.1</div>
 
 
 
||
 
 
 
 
 
[[Related Rates]]
 
 
 
||
 
 
 
* '''Formulas for area, volume, etc''' <!-- Geometry -->
 
* '''Similar triangles to form proportions''' <!-- Geometry -->
 
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* [[Trigonometric Identities]] <!-- 1093-3.4 -->
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Integration by Parts]] <!-- 1224-3.1 -->
 +
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
  
 
||
 
||
  
* Express changing quantities in terms of derivatives.
+
* Evaluate integrals involving the square root of a sum or difference of two squares.
* Find relationships among the derivatives in a given problem.
+
* Solve problems involving applications of integration using trigonometric substitution.
* Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.
 
 
 
  
  
Line 403: Line 312:
  
  
|Week&nbsp;8   
+
|Week&nbsp;7
  
 
||
 
||
  
<div style="text-align: center;">4.2</div>
+
<div style="text-align: center;">3.4</div>
  
||
+
||
 
 
  
[[Linear Approximations and Differentials]]
+
[[Partial Fractions]]
  
 
||
 
||
  
* [[Linear Equations|Slope of a Line]] <!-- Not Directly Mentioned (recommend 1073-Mod.R -->
+
* [[Factoring Polynomials]] <!-- 1073-Mod 0.2 -->
* [[Defining the Derivative|Equation of the tangent line]] <!-- 1214-3.1 -->
+
* [[Completing the Square]] <!-- 1073-Mod 3.2-->
* [[Derivatives as Rates of Change|Leibnitz notation of the derivative]] <!-- 1214-3.4 -->
+
* [[Dividing Polynomials|Long Division of Polynomials]] <!-- 1073-Mod 4.1 -->
 +
* [[Systems of Linear Equations]] <!-- 1073-Mod 12.1 and 12.2 -->
 +
* [[Antiderivatives]] <!-- 1214-4.10 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Approximate the function value close to the center of the linear approximation using the linearization.
+
* Integrate a rational function whose denominator is a product of linear and quadratic polynomials.
* Given an expression to be evaluated/approximated, come up with the function and its linearization
+
* Recognize distinct linear factors in a rational function.
* Understand the formula for the differential; how it can be used to estimate the change in the dependent variable quantity, given the small change in the independent variable quantity.
+
* Recognize repeated linear factors in a rational function.
* Use the information above to estimate potential relative (and percentage) error
+
* Recognize distinct irreducible quadratic factors in a rational function.
 
+
* Recognize repeated irreducible quadratic factors in a rational function.
 
+
* Solve problems involving applications of integration using partial fractions.
  
 
|-
 
|-
  
  
|Week&nbsp;8/9 
+
|Week&nbsp;8
  
 
||
 
||
  
<div style="text-align: center;">4.3</div>
+
<div style="text-align: center;">3.7</div>
 
 
||
 
 
 
 
 
[[Maxima and Minima]]
 
 
 
||
 
 
 
* '''[[Increasing and a decreasing functions]]''' <!-- DNE (recommend 1023-2.2) -->
 
* [[Solving Equations|Solve an algebraic equation]] <!-- 1073-Mod.R-->
 
* [[Solving Inequalities|Interval notation]] <!-- 1073-Mod.R -->
 
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
 
* [[Derivatives of Exponential and Logarithmic Functions]] <!-- 1214-3.9 -->
 
* [[Continuity]] <!-- 1214-2.4 -->
 
 
 
||
 
*
 
* Know the definitions of absolute and local extrema.
 
* Know what a critical point is and locate it (them).
 
* Use the Extreme Value Theorem to find the absolute extrema of a continuous function on a closed interval.
 
 
 
 
 
 
 
|-
 
  
 +
|| 
  
|Week&nbsp;9 
+
[[Improper Integrals]]
  
 
||
 
||
  
<div style="text-align: center;">4.4</div>
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 +
* [[Integration by Parts]] <!-- 1224-3.1 -->
 +
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
 +
* [[Trigonometric Substitution]] <!-- 1224-3.3 -->
 +
* [[Partial Fractions]] <!-- 1224-3.4 -->
 +
* [[The Limit Laws]] <!-- 1214-2.3 -->
 +
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1224-4.6 -->
 +
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
  
 
||
 
||
 
 
 
[[Mean Value Theorem]]
 
 
||
 
 
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
 
* [[Continuity]] <!-- 1214-2.4 -->
 
* [[Defining the Derivative|Slope of a Line]] <!-- 1214-3.1 -->
 
 
||
 
 
* Determine if the MVT applies given a function on an interval.
 
* Find c in the conclusion of the MVT (if algebraically feasible)
 
* Know the first 3 Corollaries of MVT (especially the 3rd)
 
 
  
 +
* Recognize improper integrals and determine their convergence or divergence.
 +
* Evaluate an integral over an infinite interval.
 +
* Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
 +
* Use the comparison theorem to determine whether an improper integral is convergent or divergent.
  
 
|-
 
|-
  
  
|Week&nbsp;9  
+
|Week&nbsp;9  
  
 
||
 
||
  
<div style="text-align: center;">4.5</div>
+
<div style="text-align: center;">5.1</div>
  
||
+
||
 
 
  
[[Derivatives and the Shape of a Graph]]
+
[[Sequences]]
  
 
||
 
||
  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[The Limit Laws| The Limit Laws and Squeeze Theorem]] <!-- 1214-2.3 -->
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
+
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1214-4.6 -->
* [[Derivatives and the Shape of a Graph|Second Derivatives]] <!-- 1214-4.5 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Derivatives and the Shape of a Graph| Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
  
 
||
 
||
  
* Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
+
* Find a formula for the general term of a sequence.
* Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
+
* Find a recursive definition of a sequence.
* Understand the shape of the graph, given the signs of the first and second derivatives
+
* Determine the convergence or divergence of a given sequence.
 
+
* Find the limit of a convergent sequence.
 
+
* Determine whether a sequence is bounded and/or monotone.
 +
* Apply the Monotone Convergence Theorem.
  
 
|-
 
|-
  
  
|Week&nbsp;10  
+
|Week&nbsp;10
  
 
||
 
||
  
<div style="text-align: center;">4.7</div>
+
<div style="text-align: center;">5.2</div>
  
||
+
||
 
 
  
[[Applied Optimization Problems]]
+
[[Infinite Series]]
  
 
||
 
||
  
* [[Mathematical Modeling]] <!-- 1214-4.1 and 1093-7.6 and 1023-1.3 -->
+
* [[Sigma notation]] <!-- DNE (recommend 1093) -->
* '''Formulas pertaining to area and volume''' <!-- Geometry -->
+
* [[Sequences]] <!-- 10224-5.1-->
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Partial Fractions]] <!-- 1224-3.4-->
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
 
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
 
  
 
||
 
||
  
 
+
* Write an infinite series using sigma notation.
* Set up a function to be optimized and find the value(s) of the independent variable which provide the optimal solution.
+
* Find the nth partial sum of an infinite series.
 
+
* Define the convergence or divergence of an infinite series.
 +
* Identify a geometric series.
 +
* Apply the Geometric Series Test.
 +
* Find the sum of a convergent geometric series.
 +
* Identify a telescoping series.
 +
* Find the sum of a telescoping series.
  
 
|-
 
|-
  
  
|Week&nbsp;10
+
|Week&nbsp;10-11
  
 
||
 
||
  
<div style="text-align: center;">4.8</div>
+
<div style="text-align: center;">5.3</div>
  
||
+
||
 
 
  
[[L’Hôpital’s Rule]]
+
[[The Divergence and Integral Tests]]
  
 
||
 
||
  
* [[Rational Function| Re-expressing Rational Functions ]] <!-- 1073-4 -->
+
* [[The Limit Laws]] <!-- 1214-2.3 -->
* [[The Limit of a Function|When a Limit is Undefined]] <!-- 1214-2.2 -->
+
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1214-4.6 -->
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[Continuity]] <!-- 1214-3.5 -->
 +
* [[Derivatives and the Shape of a Graph| Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
 +
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Improper Integrals]] <!-- 1224-3.7 -->
  
 
||
 
||
  
* Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
+
* Use the Divergence Test to determine whether a series diverges.
* Recognize when to apply L’Hôpital’s rule.
+
* Use the Integral Test to determine whether a series converges or diverges.
 
+
* Use the p-Series Test to determine whether a series converges or diverges.
 
+
* Estimate the sum of a series by finding bounds on its remainder term.
  
 
|-
 
|-
Line 580: Line 467:
 
||
 
||
  
<div style="text-align: center;">4.10</div>
+
<div style="text-align: center;">5.4</div>
  
||
+
||  
 
 
  
[[Antiderivatives]]
+
[[Comparison Tests]]
  
 
||
 
||
  
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[Derivatives and the Shape of a Graph|Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 +
* [[The Divergence and Integral Tests|The p-Series Test]] <!-- 1224-5.3 -->
  
 
||
 
||
  
* Find the general antiderivative of a given function.
+
* Use the Direct Comparison Test to determine whether a series converges or diverges.
* Explain the terms and notation used for an indefinite integral.
+
* Use the Limit Comparison Test to determine whether a series converges or diverges.
* State the power rule for integrals.
 
* Use anti-differentiation to solve simple initial-value problems.
 
 
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;11/12     
+
|Week&nbsp;12     
  
 
||
 
||
  
<div style="text-align: center;">5.1</div>
+
<div style="text-align: center;">5.5</div>
  
||
+
||
 
 
  
[[Approximating Areas]]
+
[[Alternating Series]]
  
 
||
 
||
  
* '''[[Sigma notation]]''' <!-- DNE (recommend 1093) -->
+
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
* '''[[Area of a rectangle]]''' <!-- Grades 6-12 -->
+
* [[Derivatives and the Shape of a Graph|Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 +
* [[The Divergence and Integral Tests|The p-Series Test]] <!-- 1224-5.3 -->
 +
* [[Comparison Tests]] <!-- 1224-5.4 -->
  
 
||
 
||
  
* Calculate sums and powers of integers.
+
* Use the Alternating Series Test to determine the convergence of an alternating series.
* Use the sum of rectangular areas to approximate the area under a curve.
+
* Estimate the sum of an alternating series.
* Use Riemann sums to approximate area.
+
* Explain the meaning of absolute convergence and conditional convergence.
 
 
  
  
Line 633: Line 518:
  
  
|Week&nbsp;12  
+
|Week&nbsp;12  
  
 
||
 
||
  
<div style="text-align: center;">5.2</div>
+
<div style="text-align: center;">5.6</div>
  
||
+
||  
 
 
 
 
[[The Definite Integral]]
 
 
 
||
 
 
 
* [[Antiderivatives]] <!-- 1214-4.10 -->
 
* [[The Limit of a Functions|Limits of Riemann Sums]] <!-- 1214-2.2 -->
 
* [[Continuity]] <!-- 1214-3.5 -->
 
 
 
||
 
 
 
* State the definition of the definite integral.
 
* Explain the terms integrand, limits of integration, and variable of integration.
 
* Explain when a function is integrable.
 
* Rules for the Definite Integral.
 
* Describe the relationship between the definite integral and net area.
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Calculate the average value of a function.
 
 
 
 
 
 
 
|-
 
  
|Week&nbsp;12/13 
+
[[Ratio and Root Tests]]
  
 
||
 
||
  
<div style="text-align: center;">5.3</div>
+
* [[Factorials]] <!-- Grades 6-12 -->
 
+
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
||
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
 
[[The Fundamental Theorem of Calculus]]
 
  
 
||
 
||
  
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* Use the Ratio Test to determine absolute convergence or divergence of a series.
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* Use the Root Test to determine absolute convergence or divergence of a series.
* [[Mean Value Theorem]] <!-- 1214-4.4 -->
+
* Describe a strategy for testing the convergence or divergence of a series.
* [[Inverse Functions]] <!-- 1073-7 -->
 
 
 
||
 
 
 
* Describe the meaning of the Mean Value Theorem for Integrals.
 
* State the meaning of the Fundamental Theorem of Calculus, Part 1.
 
* Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
 
* State the meaning of the Fundamental Theorem of Calculus, Part 2.
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Explain the relationship between differentiation and integration.
 
 
 
 
 
  
 
|-
 
|-
  
 
+
|Week&nbsp;13  
|Week&nbsp;13
 
  
 
||
 
||
  
<div style="text-align: center;">5.4</div>
+
<div style="text-align: center;">6.1</div>
  
 
||
 
||
 
    
 
    
 
+
[[Power Series and Functions]]
[[Integration Formulas and the Net Change Theorem]]
 
  
 
||
 
||
  
* [[Antiderivatives|Indefinite integrals]] <!-- 1214-4.10 -->
+
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]] <!-- 1214-5.3 -->
+
* [[The Divergence and Integral Tests]] <!-- 1224-5.3 -->
* [[Toolkit Functions|Displacment vs. distance traveled]] <!-- DNE (recommend 1073-1) -->
+
* [[Comparison Tests]] <!-- 1224-5.4 -->
 +
* [[Alternating Series]] <!-- 1224-5.5 -->
 +
* [[Ratio and Root Tests]] <!-- 1224-5.6 -->
  
 
||
 
||
  
* Apply the basic integration formulas.
+
* Identify a power series.
* Explain the significance of the net change theorem.
+
* Determine the interval of convergence and radius of convergence of a power series.
* Use the net change theorem to solve applied problems.
+
* Use a power series to represent certain functions.
* Apply the integrals of odd and even functions.
 
 
 
 
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;14
+
|Week&nbsp;14
  
 
||
 
||
  
<div style="text-align: center;">5.5</div>
+
<div style="text-align: center;">6.2</div>
  
||
+
||  
 
 
  
[[Substitution Method for Integrals]]
+
[[Properties of Power Series]]
  
 
||
 
||
  
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[Antiderivatives]] <!-- 1214-4.10 -->
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073-R) -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Power Series and Functions]] <!-- 1224-6.1 -->
  
 
||
 
||
  
* Use substitution to evaluate indefinite integrals.
+
* Combine power series by addition or subtraction.
* Use substitution to evaluate definite integrals.
+
* Multiply two power series together.
 
+
* Differentiate and integrate power series term-by-term.
 
+
* Use differentiation and integration of power series to represent certain functions as power series.
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;14/15  
+
|Week&nbsp;15
  
 
||
 
||
  
<div style="text-align: center;">5.6</div>
+
<div style="text-align: center;">6.3</div>
 
 
||
 
 
 
  
 +
|| 
  
[[Integrals Involving Exponential and Logarithmic Functions]]
+
[[Taylor and Maclaurin Series]]
  
 
||
 
||
  
* [[Exponential Functions]] <!-- 1073-8 -->
+
* [[The Derivative as a Function|Higher-Order Derivatives]] <!-- 1214-3.2 -->
* [[Logarithmic Functions]] <!-- 1073-8 -->
+
* [[Power Series and Functions]] <!-- 1224-6.1 -->
* [[Differentiation Rules]] <!-- 1214-5.2 -->
+
* [[Properties of Power Series]] <!-- 1224-6.2 -->
* [[Antiderivatives]] <!-- 1214-4.10 -->
 
  
 
||
 
||
  
* Integrate functions involving exponential functions.
+
* Find a Taylor or Maclaurin series representation of a function.
* Integrate functions involving logarithmic functions.
+
* Find the radius of convergence of a Taylor Series or Maclaurin series.
 
+
* Finding a Taylor polynomial of a given order for a function.
 
+
* Use Taylor's Theorem to estimate the remainder for a Taylor series approximation of a given function.
  
 
|-
 
|-
  
 
+
|}
|Week&nbsp;15 
 
 
 
||
 
 
 
<div style="text-align: center;">5.7</div>
 
 
 
||
 
 
 
 
 
[[Integrals Resulting in Inverse Trigonometric Functions]]
 
 
 
||
 
 
 
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]] <!-- 1093-3.1 and 3.2 -->
 
* [[Inverse Functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
 
* [[The Definite Integral|Rules for Integration]] <!-- 1214-5.2 -->
 
 
 
||
 
 
 
* Integrate functions resulting in inverse trigonometric functions.
 
 
 
 
||
 

Latest revision as of 09:39, 6 January 2024

The textbook for this course is Calculus (Volume 2) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.3

The Fundamental Theorem of Calculus

  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.
Week 1
1.5

Integration by Substitution

  • Recognize when to use integration by substitution.
  • Use substitution to evaluate indefinite integrals.
  • Use substitution to evaluate definite integrals.
Week 2
2.1

Area between Curves

  • Determine the area of a region between two curves by integrating with respect to the independent variable.
  • Find the area of a compound region.
  • Determine the area of a region between two curves by integrating with respect to the dependent variable.
Week 2
2.2

Determining Volumes by Slicing

  • Determine the volume of a solid by integrating a cross-section (the slicing method).
  • Find the volume of a solid of revolution using the disk method.
  • Find the volume of a solid of revolution with a cavity using the washer method.


Week 3
2.3

Volumes of Revolution, Cylindrical Shells

  • Calculate the volume of a solid of revolution by using the method of cylindrical shells.
  • Compare the different methods for calculating a volume of revolution.
Week 3
2.4

Arc Length and Surface Area

  • Determine the length of a plane curve between two points.
  • Find the surface area of a solid of revolution.
Week 4
2.5

Physical Applications

  • Determine the mass of a one-dimensional object from its linear density function.
  • Determine the mass of a two-dimensional circular object from its radial density function.
  • Calculate the work done by a variable force acting along a line.
  • Calculate the work done in stretching/compressing a spring.
  • Calculate the work done in lifting a rope/cable.
  • Calculate the work done in pumping a liquid from one height to another.
  • Find the hydrostatic force against a submerged vertical plate.


Week 5
2.6

Moments and Center of Mass

  • Find the center of mass of objects distributed along a line.
  • Find the center of mass of objects distributed in a plane.
  • Locate the center of mass of a thin plate.
  • Use symmetry to help locate the centroid of a thin plate.


Week 5-6
3.1

Integration by Parts

  • Recognize when to use integration by parts.
  • Use the integration-by-parts formula to evaluate indefinite integrals.
  • Use the integration-by-parts formula to evaluate definite integrals.
  • Use the tabular method to perform integration by parts.
  • Solve problems involving applications of integration using integration by parts.


Week 6
3.2

Trigonometric Integrals

  • Evaluate integrals involving products and powers of sin(x) and cos(x).
  • Evaluate integrals involving products and powers of sec(x) and tan(x).
  • Evaluate integrals involving products of sin(ax), sin(bx), cos(ax), and cos(bx).
  • Solve problems involving applications of integration using trigonometric integrals.


Week 6-7
3.3

Trigonometric Substitution

  • Evaluate integrals involving the square root of a sum or difference of two squares.
  • Solve problems involving applications of integration using trigonometric substitution.


Week 7
3.4

Partial Fractions

  • Integrate a rational function whose denominator is a product of linear and quadratic polynomials.
  • Recognize distinct linear factors in a rational function.
  • Recognize repeated linear factors in a rational function.
  • Recognize distinct irreducible quadratic factors in a rational function.
  • Recognize repeated irreducible quadratic factors in a rational function.
  • Solve problems involving applications of integration using partial fractions.
Week 8
3.7

Improper Integrals

  • Recognize improper integrals and determine their convergence or divergence.
  • Evaluate an integral over an infinite interval.
  • Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
  • Use the comparison theorem to determine whether an improper integral is convergent or divergent.
Week 9
5.1

Sequences

  • Find a formula for the general term of a sequence.
  • Find a recursive definition of a sequence.
  • Determine the convergence or divergence of a given sequence.
  • Find the limit of a convergent sequence.
  • Determine whether a sequence is bounded and/or monotone.
  • Apply the Monotone Convergence Theorem.
Week 10
5.2

Infinite Series

  • Write an infinite series using sigma notation.
  • Find the nth partial sum of an infinite series.
  • Define the convergence or divergence of an infinite series.
  • Identify a geometric series.
  • Apply the Geometric Series Test.
  • Find the sum of a convergent geometric series.
  • Identify a telescoping series.
  • Find the sum of a telescoping series.
Week 10-11
5.3

The Divergence and Integral Tests

  • Use the Divergence Test to determine whether a series diverges.
  • Use the Integral Test to determine whether a series converges or diverges.
  • Use the p-Series Test to determine whether a series converges or diverges.
  • Estimate the sum of a series by finding bounds on its remainder term.
Week 11
5.4

Comparison Tests

  • Use the Direct Comparison Test to determine whether a series converges or diverges.
  • Use the Limit Comparison Test to determine whether a series converges or diverges.
Week 12
5.5

Alternating Series

  • Use the Alternating Series Test to determine the convergence of an alternating series.
  • Estimate the sum of an alternating series.
  • Explain the meaning of absolute convergence and conditional convergence.


Week 12
5.6

Ratio and Root Tests

  • Use the Ratio Test to determine absolute convergence or divergence of a series.
  • Use the Root Test to determine absolute convergence or divergence of a series.
  • Describe a strategy for testing the convergence or divergence of a series.
Week 13
6.1

Power Series and Functions

  • Identify a power series.
  • Determine the interval of convergence and radius of convergence of a power series.
  • Use a power series to represent certain functions.
Week 14
6.2

Properties of Power Series

  • Combine power series by addition or subtraction.
  • Multiply two power series together.
  • Differentiate and integrate power series term-by-term.
  • Use differentiation and integration of power series to represent certain functions as power series.
Week 15
6.3

Taylor and Maclaurin Series

  • Find a Taylor or Maclaurin series representation of a function.
  • Find the radius of convergence of a Taylor Series or Maclaurin series.
  • Finding a Taylor polynomial of a given order for a function.
  • Use Taylor's Theorem to estimate the remainder for a Taylor series approximation of a given function.