Difference between revisions of "MAT4223"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(14 intermediate revisions by 3 users not shown)
Line 17: Line 17:
 
||
 
||
  
*Convergence of sequences of numbers, Cauchy criterion
+
* [[Sequences and Their Limits]] <!-- 3213-3.1 -->
* Limits of functions, continuity, differentiability, Riemann integrability
+
* [[The Cauchy Criterion for Convergence]] <!-- 3213-3.5 -->
 
+
* [[The Definition of the Limit of a Function]] <!-- 3213-4.1 -->
 +
* [[Continuous Functions on Intervals]] <!-- 4213-5.3 -->
 +
* [[The Derivative]] <!-- 4213-6.1 -->
 +
* [[Riemann Integrable Functions ]] <!-- 4213-7.2 -->
  
 
||
 
||
  
 
*  Understand the difference between pointwise convergence and uniform convergence
 
*  Understand the difference between pointwise convergence and uniform convergence
 
 
*  Understand how the continuity, diferrentiablity and integrability behave under uniform convergence
 
*  Understand how the continuity, diferrentiablity and integrability behave under uniform convergence
 
|-
 
|-
Line 41: Line 43:
 
||
 
||
  
* Convergence of series of numbers
+
* [[Introduction to Infinite Series ]] <!-- 3213-3.7 -->
   
+
* [[Uniform Convergence of Sequences of Functions]] <!-- 4223-7.1 -->
  
 
||
 
||
Line 63: Line 65:
 
||
 
||
  
* Tests for convergence of series of numbers
+
* [[Power Series and Functions ]] <!-- 1224-6.1 -->
* Taylor expansion formula
+
* [[Ratio and Root Tests ]]  <!-- 1224-5.6 -->
 +
* [[Comparison Tests ]]  <!-- 1224-5.4 -->
 +
* [[Taylor's Theorem ]]  <!-- 4213-6.3 -->
 +
* [[Uniform Convergence of Series of Functions]] <!-- 4223-7.2 -->
 +
 
 
||
 
||
  
* Determine the set of convergence for a power series
+
* Determine the set of convergence for a power series
 
 
 
* Apply the results of the previous sections to power series.
 
* Apply the results of the previous sections to power series.
 
* Apply the results to the elementary functions  
 
* Apply the results to the elementary functions  
Line 83: Line 88:
 
||
 
||
 
    
 
    
[[Weierstrass Example]]  
+
[[Uniform Convergence of Series of Functions|Weierstrass Example]]  
  
 
||
 
||
  
* Uniform Convergence of Sequences of Functions  
+
* [[Uniform Convergence of Series of Functions|The Weierstrass M-test]] <!-- 4223-7.1 -->
  
 
||
 
||
Line 110: Line 115:
  
 
||
 
||
 
+
* Vectors and operations with vectors in $R^3$
+
* [[Vectors, Matrices, and Gauss-Jordan Elimination|Vectors and the Dot Product]] <!-- 2233- 1.2 and 1.3 -->
 +
* [[Properties of the Trigonometric Functions]] <!-- 1093-2.3 -->
  
 
||
 
||
  
*  
+
* Norms in the Euclidean space, comparison
 +
* Cauchy-Schwartz inequality, triangle inequality
  
 
||
 
||
Line 130: Line 137:
 
||
 
||
  
<div style="text-align: center;">8.2 and 8.3</div>
+
<div style="text-align: center;">8.2 </div>
  
 
||  
 
||  
  
[[Linear Tranformations]]  
+
[[Linear Transformations]]  
  
 
||
 
||
  
*  
+
* [[Introduction to Linear Transformations ]] <!-- 2233-2.1 -->
 +
* [[Vectors, Matrices, and Gauss-Jordan Elimination|Basics of Matrices]] <!-- 2233- 1.2 and 1.3 -->
 +
* [[Euclidean Spaces: Algebraic Structure and Inner Product]] <!-- 4223-8.1 -->
  
 
||
 
||
  
*  
+
* The matrix of a linear transformation
 +
* The norm  of a linear transformation
 +
* Write equations of hyperplanes in the Euclidean space
  
 
||
 
||
Line 149: Line 160:
  
 
|-
 
|-
 
 
  
  
Line 166: Line 175:
 
||
 
||
  
*  
+
* [[Intervals|Closed and open intervals ]] <!-- 3213-3.7 -->
 +
* [[Cluster Points]] <!-- 3213-4.1 -->
 +
* [[Absolute Value and the Real Line ]] <!-- 3213-2.2-->
  
 
||
 
||
  
*  
+
* Learn basic notions of topology in the Euclidean space
  
 
||
 
||
Line 183: Line 194:
 
||
 
||
  
<div style="text-align: center;">9.1 and 9.2</div>
+
<div style="text-align: center;">9.1</div>
  
 
||   
 
||   
  
[[Limits of Sequences in Higher Dimensions]]  
+
[[Limits of Sequences in the Euclidean space and the Bolzano-Weierstrass Theorem]]  
  
 
||
 
||
  
*  
+
* [[Sequences and Their Limits]] <!-- 3213-3.1 -->
 +
* [[The Cauchy Criterion for Convergence]] <!-- 3213-3.5 -->
 +
* [[Subsequences]] <!-- 3213-3.4 -->
  
 
||
 
||
  
*  
+
* Convergence theorems
 +
* Bolzano-Weierstrass Theorem
  
 
||
 
||
Line 205: Line 219:
 
||
 
||
  
<div style="text-align: center;">8.3 and 8.4</div>
+
<div style="text-align: center;">9.2</div>
  
||
+
||  
 
 
  
[[The Bolzano-Weierstrass Theorem and The Heine-Borel Theorem]]  
+
[[Heine-Borel Theorem]]  
  
 
||
 
||
  
*  
+
* [[Limits of Sequences in the Euclidean space and the Bolzano-Weierstrass Theorem|The Bolzano-Weierstrass Theorem]] <!-- 4223-9.1 -->
 +
* [[The Topology of Higher Dimensions: interior, closure and boundary]]  <!-- 4223-8.3 and 8.4 -->
  
 
||
 
||
  
*  
+
* Understand the structure of compact sets
 +
* Applications
  
 
||
 
||
Line 230: Line 245:
 
||
 
||
  
<div style="text-align: center;">9.3 and 9.4</div>
+
<div style="text-align: center;">9.3 </div>
  
 
||
 
||
 
    
 
    
[[Limits of Functions]]
+
[[Limits of Vector Functions]]
  
 
||
 
||
  
*  
+
* [[The Definition of the Limit of a Function]]  <!-- 3213-4.1 -->
 +
* [[The Limit Theorems for Functions ]]  <!-- 3213-4.3 -->
 +
* [[The Topology of Higher Dimensions: interior, closure and boundary]]  <!-- 4223-8.3 and 8.4 -->
  
 
||
 
||
  
*  
+
* Limit theorems, sequential criterion
 +
* Iterated limits
 +
* Commutation of iterated limits
  
 
||  
 
||  
Line 254: Line 273:
 
||
 
||
  
<div style="text-align: center;">9.3 and 9.4</div>
+
<div style="text-align: center;"> 9.4</div>
  
 
||
 
||
 
    
 
    
[[Continuous Functions]]
+
[[Continuous Vector Functions]]
  
 
||
 
||
  
*  
+
* [[Continuous Functions]]  <!-- 4213-5.1 -->
 +
* [[The Topology of Higher Dimensions: interior, closure and boundary]]  <!-- 4223-8.3 and 8.4 -->
  
 
||
 
||
  
*  
+
* Characterizations of continuity
 +
* Properties of continuous functions
 +
* Extreme value theorem
  
 
||
 
||
Line 286: Line 308:
 
||
 
||
  
*  
+
* [[The Derivative ]]  <!-- 4213-6.1 -->
 +
* [[The Riemann Integral]]  <!-- 4213-7.1 -->
 +
* [[Continuous Functions]]  <!-- 4213-5.1 -->
  
 
||
 
||
  
*  
+
* Commutation of partial derivatives
 +
* Commutation of the limit with the the integral
 +
* Differentiating under the integral sign
  
 
||
 
||
Line 302: Line 328:
 
||
 
||
  
<div style="text-align: center;">11.2, 11.3 and 11.4</div>
+
<div style="text-align: center;">11.2</div>
||
+
 
 
+
||  
  
[[Differentiation in Higher Dimensions]]
+
[[Derivatives of Vector Functions]]
  
 
||
 
||
  
*  
+
* [[Continuous Vector Functions]]  <!-- 4223-9.4 -->
 +
* [[Partial Derivatives and Integrals]]  <!-- 4223-11.1 -->
 +
* [[Euclidean Spaces: Algebraic Structure and Inner Product]] <!-- 4223-8.1 -->
  
 
||
 
||
  
*  
+
* Necessary and sufficient conditions for differentiation
 
+
* The total derivative  of a differentiable function
||
+
* Determine whether a function if differentiable or not
  
  
Line 327: Line 355:
 
||
 
||
  
<div style="text-align: center;">11.2, 11.3 and 11.4</div>
+
<div style="text-align: center;"> 11.3 and 11.4</div>
  
 
||
 
||
 
    
 
    
[[Rules for Differentiation in Higher Dimensions]]
+
[[Rules for Differentiation and Tangent Planes]]
  
 
||
 
||
  
*  
+
* [[Differentiation of Vector-valued Functions]]  <!-- 4223-11.2 -->
 +
* [[The Derivative ]]  <!-- 4213-6.1 -->
 +
* [[Euclidean Spaces: Algebraic Structure and Inner Product]] <!-- 4223-8.1 -->
  
 
||
 
||
  
*  
+
* Basic rules for differentiation  and applications
 +
* Tangent hyperplanes to surfaces
 +
* Chain rule
  
  
Line 350: Line 382:
 
||
 
||
  
<div style="text-align: center;">11.5 and 11.6</div>
+
<div style="text-align: center;">11.5 </div>
  
 
||
 
||
 
    
 
    
[[Mean-Value Theorems]]
+
[[Mean-Value Theorems for Vector Valued Functions]]
  
 
||
 
||
  
*  
+
* [[The Mean Value Theorem ]]  <!-- 4213-6.1 -->
 +
* [[Partial Derivatives and Integrals]]  <!-- 4223-11.1 -->
 +
* [[Derivatives of Vector Functions]]  <!-- 4223-11.2 -->
  
 
||
 
||
  
*  
+
* Mean-value theorems for vector-valued functions
 +
* Lipschitz functions
  
  
Line 376: Line 411:
 
||
 
||
  
[[Taylor's Formula in Higher Dimensions]]
+
[[Taylor's Formula in Several Variables]]
  
 
||
 
||
  
*  
+
* [[Taylor's Theorem ]]  <!-- 4213-6.3 -->
 +
* [[Power Series and Analytic Functions]] <!-- 4223-7.3 -->
 +
* [[Mean-Value Theorems for Vector Valued Functions]] <!-- 4223-11.5 -->
  
 
||
 
||
  
*  
+
* Taylor's Formula in several variables, applications
  
  
Line 399: Line 436:
 
||
 
||
 
    
 
    
[[The Inverse Function Theorem]]
+
[[The Inverse Function Theorem and the Implicit Function Theorem]]
  
 
||
 
||
 
+
*  
+
* [[Inverse Functions  ]] <!-- 4213-5.6 -->
 +
* [[The Geometric Interpretation of the Determinant|Cramer's Rule  ]] <!-- 2233-6.3 -->
 +
* [[Mean-Value Theorems for Vector Valued Functions]] <!-- 4223-11.5 -->
  
 
||
 
||
  
*  
+
* The inverse function theorem and the implicit function theorem for vector-valued functions
 +
* Applications
  
  
Line 421: Line 461:
 
||
 
||
 
    
 
    
[[Lebesque theorem for Riemann Integrability on the Real Line]]
+
[[Lebesque Theorem for Riemann Integrability on the Real Line]]
  
 
||
 
||
  
*  
+
* [[Continuous Functions]]  <!-- 4213-5.1 -->
 +
* [[Riemann Integrable Functions ]] <!-- 4213-7.2 -->
  
 
||
 
||
  
*  
+
* Define an almost everywhere continuous function
 +
* The Riemann integrable functions are those almost everywhere continuous
  
  
Line 443: Line 485:
 
||
 
||
 
    
 
    
[[Integration in Higher Dimensions: Jordan regions and Volume]]
+
[[Integration in the Euclidean space: Jordan Regions and Volume]]
  
 
||
 
||
  
*  
+
* [[Riemann Integrable Functions ]] <!-- 4213-7.2 -->
 +
* [[The Darboux Integral]] <!-- 4213-7.4 -->
  
 
||
 
||
  
*  
+
* Jordan regions: volume and properties
 +
 
  
  
Line 469: Line 513:
 
||
 
||
  
*  
+
* [[Integration in the Euclidean space: Jordan Regions and Volume]] <!-- 4223-12.1 -->
  
 
||
 
||
  
*  
+
* Definition of a Riemann integrable function, characterization, properties
 
+
* Any continuous function on a closed Jordan region is integrable
 +
* Mean-valued theorems for multiple integrals
  
 
|-
 
|-
Line 491: Line 536:
 
||
 
||
  
*  
+
* [[Riemann Integration on Jordan Regions in Higher Dimensions]] <!-- 4223-12.2 -->
  
 
||
 
||
  
*  
+
* Fubini's theorem and applications
  
  
 
|-
 
|-

Latest revision as of 16:37, 29 January 2022

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
7.1

Uniform Convergence of Sequences of Functions

  • Understand the difference between pointwise convergence and uniform convergence
  • Understand how the continuity, diferrentiablity and integrability behave under uniform convergence
Week 1
7.2

Uniform Convergence of Series of Functions

  • Learn the term-by-term differentiation (resp. integration) theorem
  • Weierstrass M-test
Week 2
7.3 and 7.4

Power Series and Analytic Functions

  • Determine the set of convergence for a power series
  • Apply the results of the previous sections to power series.
  • Apply the results to the elementary functions
Week 2
7.5

Weierstrass Example

  • Learn to construct a continuous function everywhere which is not differentiable anywhere


Week 3
8.1

Euclidean Spaces: Algebraic Structure and Inner Product

  • Norms in the Euclidean space, comparison
  • Cauchy-Schwartz inequality, triangle inequality


Week 3
8.2

Linear Transformations

  • The matrix of a linear transformation
  • The norm of a linear transformation
  • Write equations of hyperplanes in the Euclidean space


Week 3
8.3 and 8.4

The Topology of Higher Dimensions: interior, closure and boundary

  • Learn basic notions of topology in the Euclidean space


Week 4
9.1

Limits of Sequences in the Euclidean space and the Bolzano-Weierstrass Theorem

  • Convergence theorems
  • Bolzano-Weierstrass Theorem


Week 4
9.2

Heine-Borel Theorem

  • Understand the structure of compact sets
  • Applications


Week 5
9.3

Limits of Vector Functions

  • Limit theorems, sequential criterion
  • Iterated limits
  • Commutation of iterated limits


Week 5
9.4

Continuous Vector Functions

  • Characterizations of continuity
  • Properties of continuous functions
  • Extreme value theorem


Week 6
11.1

Partial Derivatives and Integrals

  • Commutation of partial derivatives
  • Commutation of the limit with the the integral
  • Differentiating under the integral sign


Week 7
11.2

Derivatives of Vector Functions

  • Necessary and sufficient conditions for differentiation
  • The total derivative of a differentiable function
  • Determine whether a function if differentiable or not


Week 7
11.3 and 11.4

Rules for Differentiation and Tangent Planes

  • Basic rules for differentiation and applications
  • Tangent hyperplanes to surfaces
  • Chain rule


Week 8
11.5

Mean-Value Theorems for Vector Valued Functions

  • Mean-value theorems for vector-valued functions
  • Lipschitz functions


Week 8
11.5 and 11.6

Taylor's Formula in Several Variables

  • Taylor's Formula in several variables, applications


Weeks 8 and 9
11.6

The Inverse Function Theorem and the Implicit Function Theorem

  • The inverse function theorem and the implicit function theorem for vector-valued functions
  • Applications


Week 10
9.6

Lebesque Theorem for Riemann Integrability on the Real Line

  • Define an almost everywhere continuous function
  • The Riemann integrable functions are those almost everywhere continuous


Weeks 11 and 12
12.1

Integration in the Euclidean space: Jordan Regions and Volume

  • Jordan regions: volume and properties


Weeks 13 and  14
12.2

Riemann Integration on Jordan Regions in Higher Dimensions

  • Definition of a Riemann integrable function, characterization, properties
  • Any continuous function on a closed Jordan region is integrable
  • Mean-valued theorems for multiple integrals
Week 15
12.3

Iterated Integrals and Fubini's Theorem

  • Fubini's theorem and applications