Difference between revisions of "MAT1214"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Added important links for student convenience, added the schedule detailing when each topic should be covered, and centered the sections column.)
(→‎Topics List: removed HTML formatting)
 
(44 intermediate revisions by 4 users not shown)
Line 4: Line 4:
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
  
The Wikipedia summary of [[https://en.wikipedia.org/wiki/Calculus  calculus and its history]].
+
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
  
 +
==Topics List==
 
==Topics List==
 
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 12: Line 13:
 
|-   
 
|-   
  
|Week 1
+
|Week 1
  
 
||
 
||
  
<div style="text-align: center;">2.2</div>
+
2.2
  
 
||
 
||
 
          
 
          
[[Limit_of_a_function|The Limit of a Function]]  
+
[[The Limit of a Function]]  
  
 
||
 
||
  
* Evaluation of a function including the absolute value, rational, and piecewise functions
+
* [[Functions|Evaluation of a function]]  including the [[Absolute Value Functions| Absolute Value]] , [[Rational Functions|Rational]] , and [[Piecewise Functions|Piecewise]] functions  
 +
* [[Functions|Domain and Range of a Function]]
  
* Domain and Range of a Function
 
  
 
||
 
||
Line 42: Line 43:
  
  
|Week&nbsp;1/2     
+
|Week 1/2     
  
 
||
 
||
  
<div style="text-align: center;">2.3</div>
+
2.3
  
 
||
 
||
 
    
 
    
  
[[Limit_laws|The Limit Laws]]  
+
[[The Limit Laws]]  
  
 
||
 
||
  
  
*Simplifying algebraic expressions.
+
 
*Factoring polynomials
+
*[[Factoring Polynomials]]
*Identifying conjugate radical expressions.
+
*[[Simplifying Radicals|Identifying conjugate radical expressions]]
*Evaluating expressions at a value.
+
*[[Rational Expression|Simplifying rational expressions]]
*Simplifying complex rational expressions by obtaining common denominators.
+
*[[Domain of a Function|Evaluating piecewise functions]]
*Evaluating piecewise functions.
+
*[[Trigonometric Functions|The trigonometric functions]]
*The trigonometric functions and right triangle trigonometry.
 
  
  
Line 80: Line 80:
  
  
|Week&nbsp;2/3
+
|Week 2/3
  
 
||
 
||
  
<div style="text-align: center;">2.4</div>
+
2.4
  
 
||
 
||
 
    
 
    
[[Continuity|Continuity]]  
+
[[Continuity]]  
  
  
 
||
 
||
  
*Domain of function.
+
* [[Functions|Domain and Range of a Function]]
*Interval notation.
+
* [[Interval Notation|Interval Notation]]
*Evaluate limits.
+
* [[Limits of Functions|Evaluate limits]]
 +
* [[The Limit Laws]]
 +
* [[Polynomial Functions|Finding roots of a function]]
  
 
||
 
||
  
* Continuity at a point.
+
* Continuity at a point.  
 
* Describe three kinds of discontinuities.
 
* Describe three kinds of discontinuities.
 
* Define continuity on an interval.
 
* Define continuity on an interval.
Line 109: Line 111:
  
  
|Week&nbsp;3   
+
|Week 3   
  
 
||
 
||
  
<div style="text-align: center;">4.6</div>
+
4.6
  
 
||
 
||
 
    
 
    
[[Limits_at_infinity|Limits at infinity and asymptotes]]  
+
[[Limits at Infinity and Asymptotes]]  
  
 
||
 
||
  
* Horizontal asymptote for the graph of a function
+
* [[The Limit Laws]]
 +
* [[Continuity]]
  
 
||
 
||
Line 127: Line 130:
 
* Calculate the limit of a function that is unbounded.
 
* Calculate the limit of a function that is unbounded.
 
* Identify a horizontal asymptote for the graph of a function.
 
* Identify a horizontal asymptote for the graph of a function.
 
 
||
 
  
  
Line 135: Line 135:
  
  
|Week&nbsp;3/4   
+
|Week 3/4   
  
 
||
 
||
  
<div style="text-align: center;">3.1</div>
+
3.1
  
 
||
 
||
 
    
 
    
  
[[Derivative_definition|Defining the Derivative]]  
+
[[Defining the Derivative]]  
  
 
||
 
||
  
* Evaluation of a function at a value or variable expression.
+
* [[Functions|Evaluation of a function at a value]]
* Find equation of a line given a point on the line and its slope.
+
* [[Linear Functions and Slope|The equation of a line and its slope]]
* Evaluate limits.
+
* [[Limits of Functions|Evaluating limits]]
 +
* [[Continuity]]
  
 
||
 
||
Line 160: Line 161:
 
* Identify the derivative as the limit of a difference quotient.
 
* Identify the derivative as the limit of a difference quotient.
 
* Calculate the derivative of a given function at a point.
 
* Calculate the derivative of a given function at a point.
 
||
 
 
  
  
Line 168: Line 166:
  
  
|Week&nbsp;4
+
|Week 4
  
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
3.2
  
 
||
 
||
 
    
 
    
  
[[Derivative_function|The Derivative as a Function]]  
+
[[The Derivative as a Function]]  
  
 
||
 
||
  
* Graphing functions.
+
* [[Functions and their graphs|Graphing Functions]]
* The definition of continuity of a function at a point.
+
* [[Continuity|Continuity of a function at a point]]
* Understanding that derivative of a function at a point represents the slope of the curve at a point.
+
* [[Defining the Derivative|The derivative represents the slope of the curve at a point]]
* Understanding when a limit fails to exist.
+
* [[Limits of Functions|When a limit fails to exist]]
 +
* [[The Limit Laws]]
  
 
||
 
||
Line 193: Line 192:
 
* Describe three conditions for when a function does not have a derivative.
 
* Describe three conditions for when a function does not have a derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
||
 
  
  
Line 200: Line 197:
  
  
|Week&nbsp;4/5  
+
|Week 4/5  
  
 
||
 
||
  
<div style="text-align: center;">3.3</div>
+
3.3
  
 
||
 
||
 
    
 
    
  
[[Differentiation_rules|Differentiation Rules]]
+
[[Differentiation Rules]]
  
 
||
 
||
  
* Radical and exponential notation.
+
* [[Simplifying Radicals|Radical & Rational Exponents]]
* Convert between radical and rational exponents.
+
* [[Simplifying Exponents|Re-write negative exponents]]
* Use properties of exponents to re-write with or without negative exponents.
+
* [[The Limit Laws]]
 +
* [[The Derivative as a Function]]
  
 
||
 
||
Line 225: Line 223:
 
* Extend the power rule to functions with negative exponents.
 
* Extend the power rule to functions with negative exponents.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
||
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;5
+
|Week 5
  
 
||
 
||
  
<div style="text-align: center;">3.4</div>
+
3.4
  
 
||
 
||
Line 245: Line 240:
 
||
 
||
  
* Function evaluation at a value or variable expression.
+
* [[Functions|Function evaluation at a value]]
* Solving an algebraic equation.
+
* [[Solving Equations and Inequalities|Solving an algebraic equation]]
* Find derivatives of functions using the derivative rules.
+
* '''[[Understanding of Velocity and Acceleration]]'''
 +
* [[Differentiation Rules]]
  
 
||
 
||
Line 256: Line 252:
 
* Predict the future population from the present value and the population growth rate.
 
* Predict the future population from the present value and the population growth rate.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
||
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;5
+
|Week 5
  
 
||
 
||
  
<div style="text-align: center;">3.5</div>
+
3.5
  
 
||
 
||
 
    
 
    
  
[[Derivatives_Trigonometric_Functions|Derivatives of the Trigonometric Functions]]
+
[[Derivatives of the Trigonometric Functions]]
  
 
||
 
||
  
* State and use trigonometric identities.
+
* [[Properties of the Trigonometric Functions|Trigonometric identities]]
* Graphs of the six trigonometric functions.
+
* [[Graphs of the Sine and Cosine Functions]]
* Power, Product, and Quotient Rules for finding derivatives.
+
* [[Graphs of the Tangent, Cotangent, Cosecant and Secant Functions]]
 +
* [[Differentiation Rules|Rules for finding Derivatives]]
  
 
||
 
||
Line 285: Line 279:
 
* Find the derivatives of the standard trigonometric functions.
 
* Find the derivatives of the standard trigonometric functions.
 
* Calculate the higher-order derivatives of the sine and cosine.
 
* Calculate the higher-order derivatives of the sine and cosine.
 
||
 
  
  
Line 292: Line 284:
  
  
|Week&nbsp;6  
+
|Week 6  
  
 
||
 
||
  
<div style="text-align: center;">3.6</div>
+
3.6
 
||
 
||
 
    
 
    
Line 304: Line 296:
 
||
 
||
  
* Composition of functions.
+
* [[Composition of Functions]]
* Solve trigonometric equations.
+
* [[Trigonometric Equations|Solve Trigonometric Equations]]
* Power, Product, and Quotient Rules for finding derivatives.
+
* [[Differentiation Rules|Rules for finding Derivatives]]
 +
* [[Derivatives of the Trigonometric Functions]]
  
 
||
 
||
Line 315: Line 308:
 
* Recognize and apply the chain rule for a composition of three or more functions.
 
* Recognize and apply the chain rule for a composition of three or more functions.
 
* Use interchangeably the Newton and Leibniz Notation for the Chain Rule.
 
* Use interchangeably the Newton and Leibniz Notation for the Chain Rule.
 
||
 
 
  
  
Line 323: Line 313:
  
  
|Week&nbsp;6   
+
|Week 6   
  
 
||
 
||
  
<div style="text-align: center;">3.7</div>
+
3.7
  
 
||
 
||
 
    
 
    
 +
[[Derivatives of Inverse Functions]]
  
[[Derivatives_Inverse_Functions|Derivatives of Inverse Functions]]
+
||
  
||
+
* [[One-to-one functions|Injective Functions]]
 +
* [[Inverse Functions]] <!-- 1073-7 -->
 +
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]]
 +
* [[Differentiation Rules]]
 +
* [[The Chain Rule]]
  
* Determine if a function is 1-1.
 
* The relationship between a 1-1 function and its inverse.
 
* Knowing customary domain restrictions for trigonometric functions to define their inverses.
 
* Rules for differentiating functions.
 
 
||
 
||
  
Line 351: Line 342:
  
  
|Week&nbsp;6/7
+
|Week 6/7
  
 
||
 
||
  
<div style="text-align: center;">3.8</div>
+
3.8
  
 
||
 
||
 
    
 
    
  
[[Implicit_Differentiation|Implicit Differentiation]]
+
[[Implicit Differentiation]]
  
 
||
 
||
  
* Implicit and explicit equations.
+
* '''[[Implicit and explicit equations]]'''
* Point-slope and slope-intercept equation of a line.
+
* [[Linear Equations|Linear Functions and Slope]]
* Function evaluation.
+
* [[Functions|Function evaluation]]
* Know all rules for differentiating functions.
+
* [[Differentiation Rules]]
 +
* [[The Chain Rule]]
  
 
||
 
||
Line 379: Line 371:
  
  
|Week&nbsp;7
+
|Week 7
  
 
||
 
||
  
<div style="text-align: center;">3.9</div>
+
3.9
  
 
||
 
||
 
 
  
 
[[Derivatives of Exponential and Logarithmic Functions]]
 
[[Derivatives of Exponential and Logarithmic Functions]]
Line 392: Line 383:
 
||
 
||
  
* Know the properties associated with logarithmic expressions.
+
* [[Logarithmic Functions|Properties of logarithms]] <
* Rules for differentiating function (chain rule in particular).
+
* [[The Limit of a Function]]
* Implicit differentiation.
+
* [[Differentiation Rules]]
 +
* [[The Chain Rule]]
 +
* [[Implicit Differentiation]]
  
 
||
 
||
Line 407: Line 400:
  
  
|Week&nbsp;7/8   
+
|Week 7/8   
  
 
||
 
||
  
<div style="text-align: center;">4.1</div>
+
4.1
  
 
||
 
||
Line 420: Line 413:
 
||
 
||
  
* Formulas from classical geometry for area, volume, etc.
+
* '''Formulas for area, volume, etc'''
* Similar triangles to form proportions.
+
* '''Similar triangles to form proportions'''
* Right triangle trigonometry.
+
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* Use trigonometric identities to re-write expressions.
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]]
* Rules for finding derivatives of functions.
+
* [[Differentiation Rules]]
* Implicit differentiation.
+
* [[Implicit Differentiation]]
  
 
||
 
||
Line 438: Line 431:
  
  
|Week&nbsp;8     
+
|Week 8     
  
 
||
 
||
  
<div style="text-align: center;">4.2</div>
+
4.2
  
 
||
 
||
Line 451: Line 444:
 
||
 
||
  
* Find the equation of the tangent line to a curve y = f(x) at a certain given x-value
+
* [[Mathematical Error| Definition of Error in mathematics]]
* Understand the Leibnitz notation of the derivative
+
* [[Linear Equations|Slope of a Line]] 
 +
* [[Defining the Derivative|Equation of the tangent line]]
 +
* [[Derivatives Rates of Change|Leibnitz notation of the derivative]]
  
 
||
 
||
Line 466: Line 461:
  
  
|Week&nbsp;8/9   
+
|Week 8/9   
  
 
||
 
||
  
<div style="text-align: center;">4.3</div>
+
4.3
  
 
||
 
||
Line 479: Line 474:
 
||
 
||
  
* Understand the definition of an increasing and a decreasing function.
+
* [[The First Derivative Test|Increasing and decreasing functions]]
* Solve an algebraic equation.
+
* [[Solving Equations and Inequalities|Solve an algebraic equation]]
* Understand interval notation.
+
* [[Interval Notation|Interval notation]]
* Solve trigonometric equations.
+
* [[Trigonometric Equations]]
* Use all rules to differentiate algebraic and transcendental functions.
+
* [[Differentiation Rules]]
* Understand definition of continuity of a function at a point and over an interval.
+
* [[Derivatives of the Trigonometric Functions]]
 +
* [[Derivatives of Exponential and Logarithmic Functions]]
 +
* [[Continuity]]
  
 
||
 
||
Line 497: Line 494:
  
  
|Week&nbsp;9   
+
|Week 9   
  
 
||
 
||
  
<div style="text-align: center;">4.4</div>
+
4.4
  
 
||
 
||
Line 510: Line 507:
 
||
 
||
  
* Function evaluation.
+
* [[Functions|Evaluating Functions]]
* Solve equations.
+
* [[Continuity]]
 +
* [[Defining the Derivative|Slope of a Line]]
  
 
||
 
||
Line 524: Line 522:
  
  
|Week&nbsp;9     
+
|Week 9     
  
 
||
 
||
  
<div style="text-align: center;">4.5</div>
+
4.5
  
 
||
 
||
Line 537: Line 535:
 
||
 
||
  
* Function evaluation.
+
* [[Functions|Evaluating Functions]]
* Solve equations.
+
* [[Maxima and Minima|Critical Points of a Function]]
* Know how to find the derivative and critical point(s) of a function.
+
* [[Derivatives and the Shape of a Graph|Second Derivatives]]
* Know how to find the second derivative
 
  
 
||
 
||
Line 546: Line 543:
 
* Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
 
* Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
 
* Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
 
* Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
* Understand the shape of the graph, given the signs of the first and second derivatives
+
* Understand the shape of the graph, given the signs of the first and second derivatives.
  
  
Line 553: Line 550:
  
  
|Week&nbsp;10  
+
|Week 10  
  
 
||
 
||
  
<div style="text-align: center;">4.7</div>
+
4.7
  
 
||
 
||
Line 566: Line 563:
 
||
 
||
  
* Translate the information given into mathematical statements/formulas.
+
* '''Formulas pertaining to area and volume'''
* Know frequently used formulas pertaining to area and volume.
+
* [[Functions|Evaluating Functions]]
* Solve Algebraic and trigonometric equations.
+
* [[Trigonometric Equations]]
* Absolute extrema of a function
+
* [[Maxima and Minima|Critical Points of a Function]]
  
 
||
 
||
Line 580: Line 577:
  
  
|Week&nbsp;10
+
|Week 10
  
 
||
 
||
  
<div style="text-align: center;">4.8</div>
+
4.8
  
 
||
 
||
Line 593: Line 590:
 
||
 
||
  
* Simplifying algebraic and trigonometric expressions.
+
* [[Rational Functions| Re-expressing Rational Functions ]]
* Evaluating limits.
+
* [[The Limit of a Function|When a Limit is Undefined]]
* Finding derivatives.
+
* [[The Derivative as a Function]]
  
 
||
 
||
Line 607: Line 604:
  
  
|Week&nbsp;11   
+
|Week 11   
  
 
||
 
||
  
<div style="text-align: center;">4.10</div>
+
4.10
  
 
||
 
||
Line 620: Line 617:
 
||
 
||
  
* Inverse Functions
+
* [[Inverse Functions]]
* Finding derivatives
+
* [[The Derivative as a Function]]
 +
* [[Differentiation Rule]]
 +
* [[Derivatives of the Trigonometric Functions]]
  
 
||
 
||
Line 628: Line 627:
 
* Explain the terms and notation used for an indefinite integral.
 
* Explain the terms and notation used for an indefinite integral.
 
* State the power rule for integrals.
 
* State the power rule for integrals.
* Use antidifferentiation to solve simple initial-value problems.
+
* Use anti-differentiation to solve simple initial-value problems.
  
  
Line 635: Line 634:
  
  
|Week&nbsp;11/12     
+
|Week 11/12     
  
 
||
 
||
  
<div style="text-align: center;">5.1</div>
+
5.1
  
||
+
||
 
 
  
 
[[Approximating Areas]]
 
[[Approximating Areas]]
Line 648: Line 646:
 
||
 
||
  
* Sigma notation
+
* '''[[Sigma notation]]'''
* Area of a rectangle
+
* '''[[Area of a rectangle]]'''
* Graphs of continuous functions
+
* [[Continuity]]
 +
* [[Toolkit Functions]]
  
 
||
 
||
Line 663: Line 662:
  
  
|Week&nbsp;12   
+
|Week 12   
  
 
||
 
||
  
<div style="text-align: center;">5.2</div>
+
5.2
  
||
+
||
 
 
  
 
[[The Definite Integral]]
 
[[The Definite Integral]]
Line 676: Line 674:
 
||
 
||
  
* Antiderivatives
+
* [[Interval Notation|Interval notation]]
* Limits of Riemann Sums
+
* [[Antiderivatives]]
* Continuous functions over bounded intervals
+
* [[The Limit of a Function|Limits of Riemann Sums]]
 +
* [[Continuity]]
  
 
||
 
||
Line 685: Line 684:
 
* Explain the terms integrand, limits of integration, and variable of integration.
 
* Explain the terms integrand, limits of integration, and variable of integration.
 
* Explain when a function is integrable.
 
* Explain when a function is integrable.
 +
* Rules for the Definite Integral.
 
* Describe the relationship between the definite integral and net area.
 
* Describe the relationship between the definite integral and net area.
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Use geometry and the properties of definite integrals to evaluate them.
Line 693: Line 693:
 
|-
 
|-
  
|Week&nbsp;12/13   
+
|Week 12/13   
  
 
||
 
||
  
<div style="text-align: center;">5.3</div>
+
5.3
  
 
||
 
||
Line 704: Line 704:
  
 
||
 
||
*
+
 
* Derivatives
+
* [[The Derivative as a Function|The Derivative of a Function]]
* Antiderivatives
+
* [[Antiderivatives]]
* Mean Value Theorem
+
* [[Mean Value Theorem]]
* Inverse functions
+
* [[Inverse Functions]]
  
 
||
 
||
Line 724: Line 724:
  
  
|Week&nbsp;13
+
|Week 13
  
 
||
 
||
  
<div style="text-align: center;">5.4</div>
+
5.4
  
||
+
||
 
 
  
 
[[Integration Formulas and the Net Change Theorem]]
 
[[Integration Formulas and the Net Change Theorem]]
Line 737: Line 736:
 
||
 
||
  
* Indefinite integrals
+
* [[Antiderivatives|Indefinite integrals]] 
* Collections of functions
+
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]] 
* The Fundamental Theorem (part 2)
 
* Displacment vs. distance traveled
 
  
 
||
 
||
Line 755: Line 752:
  
  
|Week&nbsp;14   
+
|Week 14   
  
 
||
 
||
  
<div style="text-align: center;">5.5</div>
+
5.5
  
||
+
||
 
 
  
[[Substitution Method for Integrals]]
+
[[Integration by Substitution]]
  
 
||
 
||
  
* Solving basic integrals.
+
* [[The Definite Integral|Solving Basic Integrals]]
* Derivatives
+
* [[The Derivative as a Function|The Derivative of a Function]]
* Change of Variables
+
* '''[[Change of Variables]]'''
  
 
||
 
||
Line 783: Line 779:
  
  
|Week&nbsp;14/15   
+
|Week 14/15   
  
 
||
 
||
  
<div style="text-align: center;">5.6</div>
+
5.6
 
 
||
 
 
 
  
 +
|| 
  
 
[[Integrals Involving Exponential and Logarithmic Functions]]
 
[[Integrals Involving Exponential and Logarithmic Functions]]
Line 797: Line 791:
 
||
 
||
  
* Exponential and logarithmic functions
+
* [[Exponential Functions]]
* Derivatives and integrals of these two functions
+
* [[Logarithmic Functions]]
* Rules for derivatives and integration
+
* [[Differentiation Rules]]
 +
* [[Antiderivatives]]
  
 
||
 
||
Line 811: Line 806:
  
  
|Week&nbsp;15   
+
|Week 15   
  
 
||
 
||
  
<div style="text-align: center;">5.7</div>
+
5.7
  
 
||
 
||
 
    
 
    
 
 
[[Integrals Resulting in Inverse Trigonometric Functions]]
 
[[Integrals Resulting in Inverse Trigonometric Functions]]
  
 
||
 
||
  
* Trigonometric functions and their inverses
+
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]]
* Injective functions and the domain of inverse trigonometric functions
+
* [[One-to-one functions|Injective Functions]]
* Rules for integration
+
* [[The Definite Integral|Rules for Integration]]
  
 
||
 
||
  
 
* Integrate functions resulting in inverse trigonometric functions.
 
* Integrate functions resulting in inverse trigonometric functions.
 
  
||
+
|}

Latest revision as of 13:57, 31 March 2023

The textbook for this course is Calculus (Volume 1) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.

Topics List

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

2.2

The Limit of a Function


  • Describe the limit of a function using correct notation.
  • Use a table of values to estimate the limit of a function or to identify when the limit does not exist.
  • Use a graph to estimate the limit of a function or to identify when the limit does not exist.
  • Define one-sided limits and provide examples.
  • Explain the relationship between one-sided and two-sided limits.
  • Describe an infinite limit using correct notation.
  • Define a vertical asymptote.


Week 1/2

2.3


The Limit Laws



  • Recognize the basic limit laws.
  • Use the limit laws to evaluate the limit of a function.
  • Evaluate the limit of a function by factoring.
  • Use the limit laws to evaluate the limit of a polynomial or rational function.
  • Evaluate the limit of a function by factoring or by using conjugates.
  • Evaluate the limit of a function by using the squeeze theorem.
  • Evaluate left, right, and two sided limits of piecewise defined functions.
  • Evaluate limits of the form K/0, K≠0.
  • Establish and use this to evaluate other limits involving trigonometric functions.
Week 2/3

2.4

Continuity


  • Continuity at a point.
  • Describe three kinds of discontinuities.
  • Define continuity on an interval.
  • State the theorem for limits of composite functions and use the theorem to evaluate limits.
  • Provide an example of the intermediate value theorem.


Week 3

4.6

Limits at Infinity and Asymptotes

  • Calculate the limit of a function that is unbounded.
  • Identify a horizontal asymptote for the graph of a function.


Week 3/4

3.1


Defining the Derivative

  • Recognize the meaning of the tangent to a curve at a point.
  • Calculate the slope of a secant line (average rate of change of a function over an interval).
  • Calculate the slope of a tangent line.
  • Find the equation of the line tangent to a curve at a point.
  • Identify the derivative as the limit of a difference quotient.
  • Calculate the derivative of a given function at a point.


Week 4

3.2


The Derivative as a Function

  • Define the derivative function of a given function.
  • Graph a derivative function from the graph of a given function.
  • State the connection between derivatives and continuity.
  • Describe three conditions for when a function does not have a derivative.
  • Explain the meaning of and compute a higher-order derivative.


Week 4/5

3.3


Differentiation Rules

  • State the constant, constant multiple, and power rules.
  • Apply the sum and difference rules to combine derivatives.
  • Use the product rule for finding the derivative of a product of functions.
  • Use the quotient rule for finding the derivative of a quotient of functions.
  • Extend the power rule to functions with negative exponents.
  • Combine the differentiation rules to find the derivative of a polynomial or rational function.
Week 5

3.4


Derivatives as Rates of Change

  • Determine a new value of a quantity from the old value and the amount of change.
  • Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
  • Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
  • Predict the future population from the present value and the population growth rate.
  • Use derivatives to calculate marginal cost and revenue in a business situation.
Week 5

3.5


Derivatives of the Trigonometric Functions

  • Find the derivatives of the sine and cosine function.
  • Find the derivatives of the standard trigonometric functions.
  • Calculate the higher-order derivatives of the sine and cosine.


Week 6

3.6


The Chain Rule

  • State the chain rule for the composition of two functions.
  • Apply the chain rule together with the power rule.
  • Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
  • Recognize and apply the chain rule for a composition of three or more functions.
  • Use interchangeably the Newton and Leibniz Notation for the Chain Rule.


Week 6

3.7

Derivatives of Inverse Functions

  • State the Inverse Function Theorem for Derivatives.
  • Apply the Inverse Function Theorem to find the derivative of a function at a point given its inverse and a point on its graph.
  • Derivatives of the inverse trigonometric functions.


Week 6/7

3.8


Implicit Differentiation

  • Assuming, for example, y is implicitly a function of x, find the derivative of y with respect to x.
  • Assuming, for example, y is implicitly a function of x, and given an equation relating y to x, find the derivative of y with respect to x.
  • Find the equation of a line tangent to an implicitly defined curve at a point.


Week 7

3.9

Derivatives of Exponential and Logarithmic Functions

  • Find the derivative of functions that involve exponential functions.
  • Find the derivative of functions that involve logarithmic functions.
  • Use logarithmic differentiation to find the derivative of functions containing combinations of powers, products, and quotients.


Week 7/8

4.1


Related Rates

  • Express changing quantities in terms of derivatives.
  • Find relationships among the derivatives in a given problem.
  • Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.


Week 8

4.2


Linear Approximations and Differentials

  • Approximate the function value close to the center of the linear approximation using the linearization.
  • Given an expression to be evaluated/approximated, come up with the function and its linearization
  • Understand the formula for the differential; how it can be used to estimate the change in the dependent variable quantity, given the small change in the independent variable quantity.
  • Use the information above to estimate potential relative (and percentage) error


Week 8/9

4.3


Maxima and Minima

  • Know the definitions of absolute and local extrema.
  • Know what a critical point is and locate it (them).
  • Use the Extreme Value Theorem to find the absolute extrema of a continuous function on a closed interval.


Week 9

4.4


Mean Value Theorem

  • Determine if the MVT applies given a function on an interval.
  • Find c in the conclusion of the MVT (if algebraically feasible)
  • Know the first 3 Corollaries of MVT (especially the 3rd)


Week 9

4.5


Derivatives and the Shape of a Graph

  • Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
  • Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
  • Understand the shape of the graph, given the signs of the first and second derivatives.


Week 10

4.7


Applied Optimization Problems


  • Set up a function to be optimized and find the value(s) of the independent variable which provide the optimal solution.


Week 10

4.8


L’Hôpital’s Rule

  • Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
  • Recognize when to apply L’Hôpital’s rule.


Week 11

4.10


Antiderivatives

  • Find the general antiderivative of a given function.
  • Explain the terms and notation used for an indefinite integral.
  • State the power rule for integrals.
  • Use anti-differentiation to solve simple initial-value problems.


Week 11/12

5.1

Approximating Areas

  • Calculate sums and powers of integers.
  • Use the sum of rectangular areas to approximate the area under a curve.
  • Use Riemann sums to approximate area.


Week 12

5.2

The Definite Integral

  • State the definition of the definite integral.
  • Explain the terms integrand, limits of integration, and variable of integration.
  • Explain when a function is integrable.
  • Rules for the Definite Integral.
  • Describe the relationship between the definite integral and net area.
  • Use geometry and the properties of definite integrals to evaluate them.
  • Calculate the average value of a function.


Week 12/13

5.3

The Fundamental Theorem of Calculus

  • Describe the meaning of the Mean Value Theorem for Integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 1.
  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 2.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.


Week 13

5.4

Integration Formulas and the Net Change Theorem

  • Apply the basic integration formulas.
  • Explain the significance of the net change theorem.
  • Use the net change theorem to solve applied problems.
  • Apply the integrals of odd and even functions.



Week 14

5.5

Integration by Substitution

  • Use substitution to evaluate indefinite integrals.
  • Use substitution to evaluate definite integrals.



Week 14/15

5.6

Integrals Involving Exponential and Logarithmic Functions

  • Integrate functions involving exponential functions.
  • Integrate functions involving logarithmic functions.


Week 15

5.7

Integrals Resulting in Inverse Trigonometric Functions

  • Integrate functions resulting in inverse trigonometric functions.