Difference between revisions of "MAT1213"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(→‎Topics List: Corrected formatting)
 
(2 intermediate revisions by one other user not shown)
Line 6: Line 6:
 
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
 
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
  
==Topics List==
+
 
 +
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
Line 12: Line 13:
 
|-   
 
|-   
  
|Week 1
+
|Week 1
  
 
||
 
||
  
<div style="text-align: center;">2.2</div>
+
2.2
  
 
||
 
||
Line 24: Line 25:
 
||
 
||
  
* [[Functions|Evaluation of a function]] <!-- 1073-1 --> including the [[Absolute Value Functions| Absolute Value]] <!-- DNE (recommend 1073-1) -->, [[Rational Functions|Rational]] <!-- 1073-4 -->, and [[Piecewise Functions|Piecewise]] functions <!-- 1073-1 -->
+
* [[Functions|Evaluation of a function]] including the [[Absolute Value Functions| Absolute Value]] , [[Rational Functions|Rational]] , and [[Piecewise Functions|Piecewise]] functions  
* [[Functions|Domain and Range of a Function]] <!-- 1073-1 -->
+
* [[Functions|Domain and Range of a Function]]  
  
  
Line 42: Line 43:
  
  
|Week&nbsp;1/2     
+
|Week 1/2     
  
 
||
 
||
  
<div style="text-align: center;">2.3</div>
+
2.3
  
 
||
 
||
Line 57: Line 58:
  
  
*[[Factoring Polynomials]] <!-- 1023-P5 -->
+
*[[Factoring Polynomials]]  
*[[Simplifying Radicals|Identifying conjugate radical expressions]] <!-- 1073-R -->
+
*[[Simplifying Radicals|Identifying conjugate radical expressions]]  
*[[Rational Expression|Simplifying rational expressions]] <!-- 1073-4 -->
+
*[[Rational Expression|Simplifying rational expressions]]  
*[[Domain of a Function|Evaluating piecewise functions]] <!-- 1073-1.2 -->
+
*[[Domain of a Function|Evaluating piecewise functions]]  
*[[Trigonometric Functions|The trigonometric functions]] <!-- 1093-2.2 -->
+
*[[Trigonometric Functions|The trigonometric functions]]  
  
  
Line 79: Line 80:
  
  
|Week&nbsp;2/3
+
|Week 2/3
  
 
||
 
||
  
<div style="text-align: center;">2.4</div>
+
2.4
  
 
||
 
||
Line 92: Line 93:
 
||
 
||
  
* [[Functions|Domain and Range of a Function]] <!-- 1073-1 -->
+
* [[Functions|Domain and Range of a Function]]  
* [[Interval Notation|Interval Notation]] <!-- 1023-1.7 -->
+
* [[Interval Notation|Interval Notation]]  
* [[Limits of Functions|Evaluate limits]] <!-- 1214-1 -->
+
* [[Limits of Functions|Evaluate limits]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
 
* [[Polynomial Functions|Finding roots of a function]]
 
* [[Polynomial Functions|Finding roots of a function]]
  
Line 110: Line 111:
  
  
|Week&nbsp;3   
+
|Week 3   
  
 
||
 
||
  
<div style="text-align: center;">4.6</div>
+
4.6
  
 
||
 
||
Line 122: Line 123:
 
||
 
||
  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 134: Line 135:
  
  
|Week&nbsp;3/4   
+
|Week 3/4   
  
 
||
 
||
  
<div style="text-align: center;">3.1</div>
+
3.1
  
 
||
 
||
Line 147: Line 148:
 
||
 
||
  
* [[Functions|Evaluation of a function at a value]] <!-- 1073-1 -->
+
* [[Functions|Evaluation of a function at a value]]  
* [[Linear Functions and Slope|The equation of a line and its slope]] <!-- 1023-2.3 -->
+
* [[Linear Functions and Slope|The equation of a line and its slope]]  
* [[Limits of Functions|Evaluating limits]] <!-- 1214-1 -->
+
* [[Limits of Functions|Evaluating limits]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 165: Line 166:
  
  
|Week&nbsp;4
+
|Week 4
  
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
3.2
  
 
||
 
||
Line 178: Line 179:
 
||
 
||
  
* [[Functions and their graphs|Graphing Functions]] <!-- 1023-1.1 -->
+
* [[Functions and their graphs|Graphing Functions]]  
* [[Continuity|Continuity of a function at a point]] <!-- 1214-2.4 -->
+
* [[Continuity|Continuity of a function at a point]]  
* [[Defining the Derivative|The derivative represents the slope of the curve at a point]] <!-- 1214-1 -->
+
* [[Defining the Derivative|The derivative represents the slope of the curve at a point]]  
* [[Limits of Functions|When a limit fails to exist]] <!-- 1214-2.2 -->
+
* [[Limits of Functions|When a limit fails to exist]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
  
 
||
 
||
Line 191: Line 192:
 
* Describe three conditions for when a function does not have a derivative.
 
* Describe three conditions for when a function does not have a derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
  
  
Line 197: Line 197:
  
  
|Week&nbsp;4/5  
+
|Week 4/5  
  
 
||
 
||
  
<div style="text-align: center;">3.3</div>
+
3.3
  
 
||
 
||
Line 210: Line 210:
 
||
 
||
  
* [[Simplifying Radicals|Radical & Rational Exponents]] <!-- 1073-Mod.R -->
+
* [[Simplifying Radicals|Radical & Rational Exponents]]  
* [[Simplifying Exponents|Re-write negative exponents]] <!-- 1073-Mod.R -->
+
* [[Simplifying Exponents|Re-write negative exponents]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
  
 
||
 
||
Line 223: Line 223:
 
* Extend the power rule to functions with negative exponents.
 
* Extend the power rule to functions with negative exponents.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;5
+
|Week 5
  
 
||
 
||
  
<div style="text-align: center;">3.4</div>
+
3.4
  
 
||
 
||
Line 242: Line 240:
 
||
 
||
  
* [[Functions|Function evaluation at a value]] <!-- 1073-Mod 1.1 -->
+
* [[Functions|Function evaluation at a value]]  
* [[Solving Equations and Inequalities|Solving an algebraic equation]] <!-- 1073-Mod.R -->
+
* [[Solving Equations and Inequalities|Solving an algebraic equation]]  
* '''[[Understanding of Velocity and Acceleration]]''' <!-- Grades 6-12 -->
+
* '''[[Understanding of Velocity and Acceleration]]'''  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
  
 
||
 
||
Line 254: Line 252:
 
* Predict the future population from the present value and the population growth rate.
 
* Predict the future population from the present value and the population growth rate.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;5
+
|Week 5
  
 
||
 
||
  
<div style="text-align: center;">3.5</div>
+
3.5
  
 
||
 
||
Line 273: Line 269:
 
||
 
||
  
* [[Properties of the Trigonometric Functions|Trigonometric identities]] <!-- 1093-3.4 -->
+
* [[Properties of the Trigonometric Functions|Trigonometric identities]]  
 
* [[Graphs of the Sine and Cosine Functions]]
 
* [[Graphs of the Sine and Cosine Functions]]
 
* [[Graphs of the Tangent, Cotangent, Cosecant and Secant Functions]]
 
* [[Graphs of the Tangent, Cotangent, Cosecant and Secant Functions]]
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules|Rules for finding Derivatives]]  
  
 
||
 
||
Line 288: Line 284:
  
  
|Week&nbsp;6  
+
|Week 6  
  
 
||
 
||
  
<div style="text-align: center;">3.6</div>
+
3.6
 
||
 
||
 
    
 
    
Line 300: Line 296:
 
||
 
||
  
* [[Composition of Functions]] <!-- 1073-7 -->
+
* [[Composition of Functions]]  
* [[Trigonometric Equations|Solve Trigonometric Equations]] <!-- 1093-3.3 -->
+
* [[Trigonometric Equations|Solve Trigonometric Equations]]  
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules|Rules for finding Derivatives]]  
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[Derivatives of the Trigonometric Functions]]  
  
 
||
 
||
Line 317: Line 313:
  
  
|Week&nbsp;6   
+
|Week 6   
  
 
||
 
||
  
<div style="text-align: center;">3.7</div>
+
3.7
  
 
||
 
||
Line 329: Line 325:
 
||
 
||
  
* [[One-to-one functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
+
* [[One-to-one functions|Injective Functions]]  
 
* [[Inverse Functions]] <!-- 1073-7 -->
 
* [[Inverse Functions]] <!-- 1073-7 -->
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]] <!-- 1093-3.1 -->
+
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[The Chain Rule]]  
  
 
||
 
||
Line 346: Line 342:
  
  
|Week&nbsp;6/7
+
|Week 6/7
  
 
||
 
||
  
<div style="text-align: center;">3.8</div>
+
3.8
  
 
||
 
||
Line 359: Line 355:
 
||
 
||
  
* '''[[Implicit and explicit equations]]''' <!-- DNE (recommend 1073-7) -->
+
* '''[[Implicit and explicit equations]]'''  
* [[Linear Equations|Linear Functions and Slope]] <!-- 1073-Mod.R -->
+
* [[Linear Equations|Linear Functions and Slope]]  
* [[Functions|Function evaluation]] <!-- 1073-Mod 1.1 -->
+
* [[Functions|Function evaluation]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[The Chain Rule]]  
  
 
||
 
||
Line 375: Line 371:
  
  
|Week&nbsp;7
+
|Week 7
  
 
||
 
||
  
<div style="text-align: center;">3.9</div>
+
3.9
  
 
||
 
||
Line 387: Line 383:
 
||
 
||
  
* [[Logarithmic Functions|Properties of logarithms]] <!-- 1073-8 -->
+
* [[Logarithmic Functions|Properties of logarithms]] <
* [[The Limit of a Function]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[The Chain Rule]]  
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Implicit Differentiation]]  
  
 
||
 
||
Line 404: Line 400:
  
  
|Week&nbsp;7/8   
+
|Week 7/8   
  
 
||
 
||
  
<div style="text-align: center;">4.1</div>
+
4.1
  
 
||
 
||
Line 417: Line 413:
 
||
 
||
  
* '''Formulas for area, volume, etc''' <!-- Geometry -->
+
* '''Formulas for area, volume, etc'''  
* '''Similar triangles to form proportions''' <!-- Geometry -->
+
* '''Similar triangles to form proportions'''  
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Implicit Differentiation]]  
  
 
||
 
||
Line 435: Line 431:
  
  
|Week&nbsp;8     
+
|Week 8     
  
 
||
 
||
  
<div style="text-align: center;">4.2</div>
+
4.2
  
 
||
 
||
Line 448: Line 444:
 
||
 
||
  
* [[Mathematical Error| Definition of Error in mathematics]] <!-- DNE (recommend Mod 1.2) -->
+
* [[Mathematical Error| Definition of Error in mathematics]]  
* [[Linear Equations|Slope of a Line]]  <!-- 1073-Mod.R -->
+
* [[Linear Equations|Slope of a Line]]   
* [[Defining the Derivative|Equation of the tangent line]] <!-- 1214-3.1 -->
+
* [[Defining the Derivative|Equation of the tangent line]]  
* [[Derivatives Rates of Change|Leibnitz notation of the derivative]] <!-- 1214-3.4 -->
+
* [[Derivatives Rates of Change|Leibnitz notation of the derivative]]  
  
 
||
 
||
Line 465: Line 461:
  
  
|Week&nbsp;8/9   
+
|Week 8/9   
  
 
||
 
||
  
<div style="text-align: center;">4.3</div>
+
4.3
  
 
||
 
||
Line 478: Line 474:
 
||
 
||
  
* [[The First Derivative Test|Increasing and decreasing functions]] <!-- DNE (recommend 1023-2.2) -->
+
* [[The First Derivative Test|Increasing and decreasing functions]]  
* [[Solving Equations and Inequalities|Solve an algebraic equation]] <!-- 1073-Mod.R-->
+
* [[Solving Equations and Inequalities|Solve an algebraic equation]]  
* [[Interval Notation|Interval notation]] <!-- 1073-Mod.R -->
+
* [[Interval Notation|Interval notation]]  
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
+
* [[Trigonometric Equations]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[Derivatives of the Trigonometric Functions]]  
* [[Derivatives of Exponential and Logarithmic Functions]] <!-- 1214-3.9 -->
+
* [[Derivatives of Exponential and Logarithmic Functions]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 498: Line 494:
  
  
|Week&nbsp;9   
+
|Week 9   
  
 
||
 
||
  
<div style="text-align: center;">4.4</div>
+
4.4
  
 
||
 
||
Line 511: Line 507:
 
||
 
||
  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Functions|Evaluating Functions]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
* [[Defining the Derivative|Slope of a Line]] <!-- 1214-3.1 -->
+
* [[Defining the Derivative|Slope of a Line]]  
  
 
||
 
||
Line 526: Line 522:
  
  
|Week&nbsp;9     
+
|Week 9     
  
 
||
 
||
  
<div style="text-align: center;">4.5</div>
+
4.5
  
 
||
 
||
Line 539: Line 535:
 
||
 
||
  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Functions|Evaluating Functions]]  
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
+
* [[Maxima and Minima|Critical Points of a Function]]  
* [[Derivatives and the Shape of a Graph|Second Derivatives]] <!-- 1214-4.5 -->
+
* [[Derivatives and the Shape of a Graph|Second Derivatives]]  
  
 
||
 
||
Line 554: Line 550:
  
  
|Week&nbsp;10  
+
|Week 10  
  
 
||
 
||
  
<div style="text-align: center;">4.7</div>
+
4.7
  
 
||
 
||
Line 567: Line 563:
 
||
 
||
  
* '''Formulas pertaining to area and volume''' <!-- Geometry -->
+
* '''Formulas pertaining to area and volume'''  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Functions|Evaluating Functions]]  
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
+
* [[Trigonometric Equations]]  
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
+
* [[Maxima and Minima|Critical Points of a Function]]  
  
 
||
 
||
Line 581: Line 577:
  
  
|Week&nbsp;10
+
|Week 10
  
 
||
 
||
  
<div style="text-align: center;">4.8</div>
+
4.8
  
 
||
 
||
Line 594: Line 590:
 
||
 
||
  
* [[Rational Functions| Re-expressing Rational Functions ]] <!-- 1073-4 -->
+
* [[Rational Functions| Re-expressing Rational Functions ]]  
* [[The Limit of a Function|When a Limit is Undefined]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function|When a Limit is Undefined]]  
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
  
 
||
 
||
Line 608: Line 604:
  
  
|Week&nbsp;11   
+
|Week 11   
  
 
||
 
||
  
<div style="text-align: center;">4.10</div>
+
4.10
  
 
||
 
||
Line 621: Line 617:
 
||
 
||
  
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Inverse Functions]]  
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
* [[Differentiation Rule]] <!-- 1214-3.3 -->
+
* [[Differentiation Rule]]  
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[Derivatives of the Trigonometric Functions]]  
  
 
||
 
||
Line 632: Line 628:
 
* State the power rule for integrals.
 
* State the power rule for integrals.
 
* Use anti-differentiation to solve simple initial-value problems.
 
* Use anti-differentiation to solve simple initial-value problems.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;11/12     
+
|Week 11/12     
  
 
||
 
||
  
<div style="text-align: center;">5.1</div>
+
5.1
  
 
||   
 
||   
Line 648: Line 646:
 
||
 
||
  
* '''[[Sigma notation]]''' <!-- DNE (recommend 1093) -->
+
* '''[[Sigma notation]]'''  
* '''[[Area of a rectangle]]''' <!-- Grades 6-12 -->
+
* '''[[Area of a rectangle]]'''  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Continuity]]  
* [[Toolkit Functions]] <!-- 1073-Mod 1.2 -->
+
* [[Toolkit Functions]]  
  
 
||
 
||
Line 658: Line 656:
 
* Use the sum of rectangular areas to approximate the area under a curve.
 
* Use the sum of rectangular areas to approximate the area under a curve.
 
* Use Riemann sums to approximate area.
 
* Use Riemann sums to approximate area.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;12   
+
|Week 12   
  
 
||
 
||
  
<div style="text-align: center;">5.2</div>
+
5.2
  
 
||   
 
||   
Line 674: Line 674:
 
||
 
||
  
* [[Interval Notation|Interval notation]] <!-- 1073-Mod.R -->
+
* [[Interval Notation|Interval notation]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Antiderivatives]]  
* [[The Limit of a Function|Limits of Riemann Sums]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function|Limits of Riemann Sums]]  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 688: Line 688:
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Calculate the average value of a function.
 
* Calculate the average value of a function.
 +
 +
  
 
|-
 
|-
  
|Week&nbsp;12/13   
+
|Week 12/13   
  
 
||
 
||
  
<div style="text-align: center;">5.3</div>
+
5.3
  
 
||
 
||
Line 703: Line 705:
 
||
 
||
  
* [[The Derivative as a Function|The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[The Derivative as a Function|The Derivative of a Function]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Antiderivatives]]  
* [[Mean Value Theorem]] <!-- 1214-4.4 -->
+
* [[Mean Value Theorem]]  
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Inverse Functions]]  
  
 
||
 
||
Line 716: Line 718:
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Explain the relationship between differentiation and integration.
 
* Explain the relationship between differentiation and integration.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;13
+
|Week 13
  
 
||
 
||
  
<div style="text-align: center;">5.4</div>
+
5.4
  
 
||   
 
||   
Line 732: Line 736:
 
||
 
||
  
* [[Antiderivatives|Indefinite integrals]]  <!-- 1214-4.10 -->
+
* [[Antiderivatives|Indefinite integrals]]   
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]]  <!-- 1214-5.3 -->
+
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]]   
  
 
||
 
||
Line 741: Line 745:
 
* Use the net change theorem to solve applied problems.
 
* Use the net change theorem to solve applied problems.
 
* Apply the integrals of odd and even functions.
 
* Apply the integrals of odd and even functions.
 +
 +
  
  
Line 746: Line 752:
  
  
|Week&nbsp;14   
+
|Week 14   
  
 
||
 
||
  
<div style="text-align: center;">5.5</div>
+
5.5
  
 
||   
 
||   
Line 758: Line 764:
 
||
 
||
  
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[The Definite Integral|Solving Basic Integrals]]  
* [[The Derivative as a Function|The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[The Derivative as a Function|The Derivative of a Function]]  
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073-R) -->
+
* '''[[Change of Variables]]'''  
  
 
||
 
||
Line 766: Line 772:
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate definite integrals.
 
* Use substitution to evaluate definite integrals.
 +
 +
  
  
Line 771: Line 779:
  
  
|Week&nbsp;14/15   
+
|Week 14/15   
  
 
||
 
||
  
<div style="text-align: center;">5.6</div>
+
5.6
  
 
||   
 
||   
Line 783: Line 791:
 
||
 
||
  
* [[Exponential Functions]] <!-- 1073-8 -->
+
* [[Exponential Functions]]  
* [[Logarithmic Functions]] <!-- 1073-8 -->
+
* [[Logarithmic Functions]]  
* [[Differentiation Rules]] <!-- 1214-5.2 -->
+
* [[Differentiation Rules]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Antiderivatives]]  
  
 
||
 
||
Line 792: Line 800:
 
* Integrate functions involving exponential functions.
 
* Integrate functions involving exponential functions.
 
* Integrate functions involving logarithmic functions.
 
* Integrate functions involving logarithmic functions.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;15   
+
|Week 15   
  
 
||
 
||
  
<div style="text-align: center;">5.7</div>
+
5.7
  
 
||
 
||
Line 808: Line 818:
 
||
 
||
  
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]] <!-- 1093-3.1 and 3.2 -->
+
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]]  
* [[One-to-one functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
+
* [[One-to-one functions|Injective Functions]]  
* [[The Definite Integral|Rules for Integration]] <!-- 1214-5.2 -->
+
* [[The Definite Integral|Rules for Integration]]  
  
 
||
 
||
  
 
* Integrate functions resulting in inverse trigonometric functions.
 
* Integrate functions resulting in inverse trigonometric functions.
+
 
 
|}
 
|}

Latest revision as of 08:02, 24 August 2024

The textbook for this course is Calculus (Volume 1) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.


==Topics List==
Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

2.2

The Limit of a Function


  • Describe the limit of a function using correct notation.
  • Use a table of values to estimate the limit of a function or to identify when the limit does not exist.
  • Use a graph to estimate the limit of a function or to identify when the limit does not exist.
  • Define one-sided limits and provide examples.
  • Explain the relationship between one-sided and two-sided limits.
  • Describe an infinite limit using correct notation.
  • Define a vertical asymptote.


Week 1/2

2.3


The Limit Laws



  • Recognize the basic limit laws.
  • Use the limit laws to evaluate the limit of a function.
  • Evaluate the limit of a function by factoring.
  • Use the limit laws to evaluate the limit of a polynomial or rational function.
  • Evaluate the limit of a function by factoring or by using conjugates.
  • Evaluate the limit of a function by using the squeeze theorem.
  • Evaluate left, right, and two sided limits of piecewise defined functions.
  • Evaluate limits of the form K/0, K≠0.
  • Establish and use this to evaluate other limits involving trigonometric functions.
Week 2/3

2.4

Continuity


  • Continuity at a point.
  • Describe three kinds of discontinuities.
  • Define continuity on an interval.
  • State the theorem for limits of composite functions and use the theorem to evaluate limits.
  • Provide an example of the intermediate value theorem.


Week 3

4.6

Limits at Infinity and Asymptotes

  • Calculate the limit of a function that is unbounded.
  • Identify a horizontal asymptote for the graph of a function.


Week 3/4

3.1


Defining the Derivative

  • Recognize the meaning of the tangent to a curve at a point.
  • Calculate the slope of a secant line (average rate of change of a function over an interval).
  • Calculate the slope of a tangent line.
  • Find the equation of the line tangent to a curve at a point.
  • Identify the derivative as the limit of a difference quotient.
  • Calculate the derivative of a given function at a point.


Week 4

3.2


The Derivative as a Function

  • Define the derivative function of a given function.
  • Graph a derivative function from the graph of a given function.
  • State the connection between derivatives and continuity.
  • Describe three conditions for when a function does not have a derivative.
  • Explain the meaning of and compute a higher-order derivative.


Week 4/5

3.3


Differentiation Rules

  • State the constant, constant multiple, and power rules.
  • Apply the sum and difference rules to combine derivatives.
  • Use the product rule for finding the derivative of a product of functions.
  • Use the quotient rule for finding the derivative of a quotient of functions.
  • Extend the power rule to functions with negative exponents.
  • Combine the differentiation rules to find the derivative of a polynomial or rational function.
Week 5

3.4


Derivatives as Rates of Change

  • Determine a new value of a quantity from the old value and the amount of change.
  • Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
  • Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
  • Predict the future population from the present value and the population growth rate.
  • Use derivatives to calculate marginal cost and revenue in a business situation.
Week 5

3.5


Derivatives of the Trigonometric Functions

  • Find the derivatives of the sine and cosine function.
  • Find the derivatives of the standard trigonometric functions.
  • Calculate the higher-order derivatives of the sine and cosine.


Week 6

3.6


The Chain Rule

  • State the chain rule for the composition of two functions.
  • Apply the chain rule together with the power rule.
  • Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
  • Recognize and apply the chain rule for a composition of three or more functions.
  • Use interchangeably the Newton and Leibniz Notation for the Chain Rule.


Week 6

3.7

Derivatives of Inverse Functions

  • State the Inverse Function Theorem for Derivatives.
  • Apply the Inverse Function Theorem to find the derivative of a function at a point given its inverse and a point on its graph.
  • Derivatives of the inverse trigonometric functions.


Week 6/7

3.8


Implicit Differentiation

  • Assuming, for example, y is implicitly a function of x, find the derivative of y with respect to x.
  • Assuming, for example, y is implicitly a function of x, and given an equation relating y to x, find the derivative of y with respect to x.
  • Find the equation of a line tangent to an implicitly defined curve at a point.


Week 7

3.9

Derivatives of Exponential and Logarithmic Functions

  • Find the derivative of functions that involve exponential functions.
  • Find the derivative of functions that involve logarithmic functions.
  • Use logarithmic differentiation to find the derivative of functions containing combinations of powers, products, and quotients.


Week 7/8

4.1


Related Rates

  • Express changing quantities in terms of derivatives.
  • Find relationships among the derivatives in a given problem.
  • Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.


Week 8

4.2


Linear Approximations and Differentials

  • Approximate the function value close to the center of the linear approximation using the linearization.
  • Given an expression to be evaluated/approximated, come up with the function and its linearization
  • Understand the formula for the differential; how it can be used to estimate the change in the dependent variable quantity, given the small change in the independent variable quantity.
  • Use the information above to estimate potential relative (and percentage) error


Week 8/9

4.3


Maxima and Minima

  • Know the definitions of absolute and local extrema.
  • Know what a critical point is and locate it (them).
  • Use the Extreme Value Theorem to find the absolute extrema of a continuous function on a closed interval.


Week 9

4.4


Mean Value Theorem

  • Determine if the MVT applies given a function on an interval.
  • Find c in the conclusion of the MVT (if algebraically feasible)
  • Know the first 3 Corollaries of MVT (especially the 3rd)


Week 9

4.5


Derivatives and the Shape of a Graph

  • Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
  • Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
  • Understand the shape of the graph, given the signs of the first and second derivatives.


Week 10

4.7


Applied Optimization Problems


  • Set up a function to be optimized and find the value(s) of the independent variable which provide the optimal solution.


Week 10

4.8


L’Hôpital’s Rule

  • Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
  • Recognize when to apply L’Hôpital’s rule.


Week 11

4.10


Antiderivatives

  • Find the general antiderivative of a given function.
  • Explain the terms and notation used for an indefinite integral.
  • State the power rule for integrals.
  • Use anti-differentiation to solve simple initial-value problems.


Week 11/12

5.1

Approximating Areas

  • Calculate sums and powers of integers.
  • Use the sum of rectangular areas to approximate the area under a curve.
  • Use Riemann sums to approximate area.


Week 12

5.2

The Definite Integral

  • State the definition of the definite integral.
  • Explain the terms integrand, limits of integration, and variable of integration.
  • Explain when a function is integrable.
  • Rules for the Definite Integral.
  • Describe the relationship between the definite integral and net area.
  • Use geometry and the properties of definite integrals to evaluate them.
  • Calculate the average value of a function.


Week 12/13

5.3

The Fundamental Theorem of Calculus

  • Describe the meaning of the Mean Value Theorem for Integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 1.
  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 2.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.


Week 13

5.4

Integration Formulas and the Net Change Theorem

  • Apply the basic integration formulas.
  • Explain the significance of the net change theorem.
  • Use the net change theorem to solve applied problems.
  • Apply the integrals of odd and even functions.



Week 14

5.5

Integration by Substitution

  • Use substitution to evaluate indefinite integrals.
  • Use substitution to evaluate definite integrals.



Week 14/15

5.6

Integrals Involving Exponential and Logarithmic Functions

  • Integrate functions involving exponential functions.
  • Integrate functions involving logarithmic functions.


Week 15

5.7

Integrals Resulting in Inverse Trigonometric Functions

  • Integrate functions resulting in inverse trigonometric functions.