Difference between revisions of "MAT1213"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(→‎Topics List: Corrected formatting)
(→‎Topics List: removed html formatting)
Line 6: Line 6:
 
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
 
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
  
 +
==Topics List==
 
==Topics List==
 
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 12: Line 13:
 
|-   
 
|-   
  
|Week 1
+
|Week 1
  
 
||
 
||
  
<div style="text-align: center;">2.2</div>
+
2.2
  
 
||
 
||
Line 24: Line 25:
 
||
 
||
  
* [[Functions|Evaluation of a function]] <!-- 1073-1 --> including the [[Absolute Value Functions| Absolute Value]] <!-- DNE (recommend 1073-1) -->, [[Rational Functions|Rational]] <!-- 1073-4 -->, and [[Piecewise Functions|Piecewise]] functions <!-- 1073-1 -->
+
* [[Functions|Evaluation of a function]] including the [[Absolute Value Functions| Absolute Value]] , [[Rational Functions|Rational]] , and [[Piecewise Functions|Piecewise]] functions  
* [[Functions|Domain and Range of a Function]] <!-- 1073-1 -->
+
* [[Functions|Domain and Range of a Function]]  
  
  
Line 42: Line 43:
  
  
|Week&nbsp;1/2     
+
|Week 1/2     
  
 
||
 
||
  
<div style="text-align: center;">2.3</div>
+
2.3
  
 
||
 
||
Line 57: Line 58:
  
  
*[[Factoring Polynomials]] <!-- 1023-P5 -->
+
*[[Factoring Polynomials]]  
*[[Simplifying Radicals|Identifying conjugate radical expressions]] <!-- 1073-R -->
+
*[[Simplifying Radicals|Identifying conjugate radical expressions]]  
*[[Rational Expression|Simplifying rational expressions]] <!-- 1073-4 -->
+
*[[Rational Expression|Simplifying rational expressions]]  
*[[Domain of a Function|Evaluating piecewise functions]] <!-- 1073-1.2 -->
+
*[[Domain of a Function|Evaluating piecewise functions]]  
*[[Trigonometric Functions|The trigonometric functions]] <!-- 1093-2.2 -->
+
*[[Trigonometric Functions|The trigonometric functions]]  
  
  
Line 79: Line 80:
  
  
|Week&nbsp;2/3
+
|Week 2/3
  
 
||
 
||
  
<div style="text-align: center;">2.4</div>
+
2.4
  
 
||
 
||
Line 92: Line 93:
 
||
 
||
  
* [[Functions|Domain and Range of a Function]] <!-- 1073-1 -->
+
* [[Functions|Domain and Range of a Function]]  
* [[Interval Notation|Interval Notation]] <!-- 1023-1.7 -->
+
* [[Interval Notation|Interval Notation]]  
* [[Limits of Functions|Evaluate limits]] <!-- 1214-1 -->
+
* [[Limits of Functions|Evaluate limits]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
 
* [[Polynomial Functions|Finding roots of a function]]
 
* [[Polynomial Functions|Finding roots of a function]]
  
Line 110: Line 111:
  
  
|Week&nbsp;3   
+
|Week 3   
  
 
||
 
||
  
<div style="text-align: center;">4.6</div>
+
4.6
  
 
||
 
||
Line 122: Line 123:
 
||
 
||
  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 134: Line 135:
  
  
|Week&nbsp;3/4   
+
|Week 3/4   
  
 
||
 
||
  
<div style="text-align: center;">3.1</div>
+
3.1
  
 
||
 
||
Line 147: Line 148:
 
||
 
||
  
* [[Functions|Evaluation of a function at a value]] <!-- 1073-1 -->
+
* [[Functions|Evaluation of a function at a value]]  
* [[Linear Functions and Slope|The equation of a line and its slope]] <!-- 1023-2.3 -->
+
* [[Linear Functions and Slope|The equation of a line and its slope]]  
* [[Limits of Functions|Evaluating limits]] <!-- 1214-1 -->
+
* [[Limits of Functions|Evaluating limits]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 165: Line 166:
  
  
|Week&nbsp;4
+
|Week 4
  
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
3.2
  
 
||
 
||
Line 178: Line 179:
 
||
 
||
  
* [[Functions and their graphs|Graphing Functions]] <!-- 1023-1.1 -->
+
* [[Functions and their graphs|Graphing Functions]]  
* [[Continuity|Continuity of a function at a point]] <!-- 1214-2.4 -->
+
* [[Continuity|Continuity of a function at a point]]  
* [[Defining the Derivative|The derivative represents the slope of the curve at a point]] <!-- 1214-1 -->
+
* [[Defining the Derivative|The derivative represents the slope of the curve at a point]]  
* [[Limits of Functions|When a limit fails to exist]] <!-- 1214-2.2 -->
+
* [[Limits of Functions|When a limit fails to exist]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
  
 
||
 
||
Line 191: Line 192:
 
* Describe three conditions for when a function does not have a derivative.
 
* Describe three conditions for when a function does not have a derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
  
  
Line 197: Line 197:
  
  
|Week&nbsp;4/5  
+
|Week 4/5  
  
 
||
 
||
  
<div style="text-align: center;">3.3</div>
+
3.3
  
 
||
 
||
Line 210: Line 210:
 
||
 
||
  
* [[Simplifying Radicals|Radical & Rational Exponents]] <!-- 1073-Mod.R -->
+
* [[Simplifying Radicals|Radical & Rational Exponents]]  
* [[Simplifying Exponents|Re-write negative exponents]] <!-- 1073-Mod.R -->
+
* [[Simplifying Exponents|Re-write negative exponents]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[The Limit Laws]]  
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
  
 
||
 
||
Line 223: Line 223:
 
* Extend the power rule to functions with negative exponents.
 
* Extend the power rule to functions with negative exponents.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;5
+
|Week 5
  
 
||
 
||
  
<div style="text-align: center;">3.4</div>
+
3.4
  
 
||
 
||
Line 242: Line 240:
 
||
 
||
  
* [[Functions|Function evaluation at a value]] <!-- 1073-Mod 1.1 -->
+
* [[Functions|Function evaluation at a value]]  
* [[Solving Equations and Inequalities|Solving an algebraic equation]] <!-- 1073-Mod.R -->
+
* [[Solving Equations and Inequalities|Solving an algebraic equation]]  
* '''[[Understanding of Velocity and Acceleration]]''' <!-- Grades 6-12 -->
+
* '''[[Understanding of Velocity and Acceleration]]'''  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
  
 
||
 
||
Line 254: Line 252:
 
* Predict the future population from the present value and the population growth rate.
 
* Predict the future population from the present value and the population growth rate.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;5
+
|Week 5
  
 
||
 
||
  
<div style="text-align: center;">3.5</div>
+
3.5
  
 
||
 
||
Line 273: Line 269:
 
||
 
||
  
* [[Properties of the Trigonometric Functions|Trigonometric identities]] <!-- 1093-3.4 -->
+
* [[Properties of the Trigonometric Functions|Trigonometric identities]]  
 
* [[Graphs of the Sine and Cosine Functions]]
 
* [[Graphs of the Sine and Cosine Functions]]
 
* [[Graphs of the Tangent, Cotangent, Cosecant and Secant Functions]]
 
* [[Graphs of the Tangent, Cotangent, Cosecant and Secant Functions]]
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules|Rules for finding Derivatives]]  
  
 
||
 
||
Line 288: Line 284:
  
  
|Week&nbsp;6  
+
|Week 6  
  
 
||
 
||
  
<div style="text-align: center;">3.6</div>
+
3.6
 
||
 
||
 
    
 
    
Line 300: Line 296:
 
||
 
||
  
* [[Composition of Functions]] <!-- 1073-7 -->
+
* [[Composition of Functions]]  
* [[Trigonometric Equations|Solve Trigonometric Equations]] <!-- 1093-3.3 -->
+
* [[Trigonometric Equations|Solve Trigonometric Equations]]  
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules|Rules for finding Derivatives]]  
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[Derivatives of the Trigonometric Functions]]  
  
 
||
 
||
Line 317: Line 313:
  
  
|Week&nbsp;6   
+
|Week 6   
  
 
||
 
||
  
<div style="text-align: center;">3.7</div>
+
3.7
  
 
||
 
||
Line 329: Line 325:
 
||
 
||
  
* [[One-to-one functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
+
* [[One-to-one functions|Injective Functions]]  
 
* [[Inverse Functions]] <!-- 1073-7 -->
 
* [[Inverse Functions]] <!-- 1073-7 -->
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]] <!-- 1093-3.1 -->
+
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[The Chain Rule]]  
  
 
||
 
||
Line 346: Line 342:
  
  
|Week&nbsp;6/7
+
|Week 6/7
  
 
||
 
||
  
<div style="text-align: center;">3.8</div>
+
3.8
  
 
||
 
||
Line 359: Line 355:
 
||
 
||
  
* '''[[Implicit and explicit equations]]''' <!-- DNE (recommend 1073-7) -->
+
* '''[[Implicit and explicit equations]]'''  
* [[Linear Equations|Linear Functions and Slope]] <!-- 1073-Mod.R -->
+
* [[Linear Equations|Linear Functions and Slope]]  
* [[Functions|Function evaluation]] <!-- 1073-Mod 1.1 -->
+
* [[Functions|Function evaluation]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[The Chain Rule]]  
  
 
||
 
||
Line 375: Line 371:
  
  
|Week&nbsp;7
+
|Week 7
  
 
||
 
||
  
<div style="text-align: center;">3.9</div>
+
3.9
  
 
||
 
||
Line 387: Line 383:
 
||
 
||
  
* [[Logarithmic Functions|Properties of logarithms]] <!-- 1073-8 -->
+
* [[Logarithmic Functions|Properties of logarithms]] <
* [[The Limit of a Function]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[The Chain Rule]]  
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Implicit Differentiation]]  
  
 
||
 
||
Line 404: Line 400:
  
  
|Week&nbsp;7/8   
+
|Week 7/8   
  
 
||
 
||
  
<div style="text-align: center;">4.1</div>
+
4.1
  
 
||
 
||
Line 417: Line 413:
 
||
 
||
  
* '''Formulas for area, volume, etc''' <!-- Geometry -->
+
* '''Formulas for area, volume, etc'''  
* '''Similar triangles to form proportions''' <!-- Geometry -->
+
* '''Similar triangles to form proportions'''  
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Implicit Differentiation]]  
  
 
||
 
||
Line 435: Line 431:
  
  
|Week&nbsp;8     
+
|Week 8     
  
 
||
 
||
  
<div style="text-align: center;">4.2</div>
+
4.2
  
 
||
 
||
Line 448: Line 444:
 
||
 
||
  
* [[Mathematical Error| Definition of Error in mathematics]] <!-- DNE (recommend Mod 1.2) -->
+
* [[Mathematical Error| Definition of Error in mathematics]]  
* [[Linear Equations|Slope of a Line]]  <!-- 1073-Mod.R -->
+
* [[Linear Equations|Slope of a Line]]   
* [[Defining the Derivative|Equation of the tangent line]] <!-- 1214-3.1 -->
+
* [[Defining the Derivative|Equation of the tangent line]]  
* [[Derivatives Rates of Change|Leibnitz notation of the derivative]] <!-- 1214-3.4 -->
+
* [[Derivatives Rates of Change|Leibnitz notation of the derivative]]  
  
 
||
 
||
Line 465: Line 461:
  
  
|Week&nbsp;8/9   
+
|Week 8/9   
  
 
||
 
||
  
<div style="text-align: center;">4.3</div>
+
4.3
  
 
||
 
||
Line 478: Line 474:
 
||
 
||
  
* [[The First Derivative Test|Increasing and decreasing functions]] <!-- DNE (recommend 1023-2.2) -->
+
* [[The First Derivative Test|Increasing and decreasing functions]]  
* [[Solving Equations and Inequalities|Solve an algebraic equation]] <!-- 1073-Mod.R-->
+
* [[Solving Equations and Inequalities|Solve an algebraic equation]]  
* [[Interval Notation|Interval notation]] <!-- 1073-Mod.R -->
+
* [[Interval Notation|Interval notation]]  
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
+
* [[Trigonometric Equations]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Differentiation Rules]]  
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[Derivatives of the Trigonometric Functions]]  
* [[Derivatives of Exponential and Logarithmic Functions]] <!-- 1214-3.9 -->
+
* [[Derivatives of Exponential and Logarithmic Functions]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 498: Line 494:
  
  
|Week&nbsp;9   
+
|Week 9   
  
 
||
 
||
  
<div style="text-align: center;">4.4</div>
+
4.4
  
 
||
 
||
Line 511: Line 507:
 
||
 
||
  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Functions|Evaluating Functions]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
* [[Defining the Derivative|Slope of a Line]] <!-- 1214-3.1 -->
+
* [[Defining the Derivative|Slope of a Line]]  
  
 
||
 
||
Line 526: Line 522:
  
  
|Week&nbsp;9     
+
|Week 9     
  
 
||
 
||
  
<div style="text-align: center;">4.5</div>
+
4.5
  
 
||
 
||
Line 539: Line 535:
 
||
 
||
  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Functions|Evaluating Functions]]  
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
+
* [[Maxima and Minima|Critical Points of a Function]]  
* [[Derivatives and the Shape of a Graph|Second Derivatives]] <!-- 1214-4.5 -->
+
* [[Derivatives and the Shape of a Graph|Second Derivatives]]  
  
 
||
 
||
Line 554: Line 550:
  
  
|Week&nbsp;10  
+
|Week 10  
  
 
||
 
||
  
<div style="text-align: center;">4.7</div>
+
4.7
  
 
||
 
||
Line 567: Line 563:
 
||
 
||
  
* '''Formulas pertaining to area and volume''' <!-- Geometry -->
+
* '''Formulas pertaining to area and volume'''  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[Functions|Evaluating Functions]]  
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
+
* [[Trigonometric Equations]]  
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
+
* [[Maxima and Minima|Critical Points of a Function]]  
  
 
||
 
||
Line 581: Line 577:
  
  
|Week&nbsp;10
+
|Week 10
  
 
||
 
||
  
<div style="text-align: center;">4.8</div>
+
4.8
  
 
||
 
||
Line 594: Line 590:
 
||
 
||
  
* [[Rational Functions| Re-expressing Rational Functions ]] <!-- 1073-4 -->
+
* [[Rational Functions| Re-expressing Rational Functions ]]  
* [[The Limit of a Function|When a Limit is Undefined]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function|When a Limit is Undefined]]  
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
  
 
||
 
||
Line 608: Line 604:
  
  
|Week&nbsp;11   
+
|Week 11   
  
 
||
 
||
  
<div style="text-align: center;">4.10</div>
+
4.10
  
 
||
 
||
Line 621: Line 617:
 
||
 
||
  
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Inverse Functions]]  
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
* [[Differentiation Rule]] <!-- 1214-3.3 -->
+
* [[Differentiation Rule]]  
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[Derivatives of the Trigonometric Functions]]  
  
 
||
 
||
Line 632: Line 628:
 
* State the power rule for integrals.
 
* State the power rule for integrals.
 
* Use anti-differentiation to solve simple initial-value problems.
 
* Use anti-differentiation to solve simple initial-value problems.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;11/12     
+
|Week 11/12     
  
 
||
 
||
  
<div style="text-align: center;">5.1</div>
+
5.1
  
 
||   
 
||   
Line 648: Line 646:
 
||
 
||
  
* '''[[Sigma notation]]''' <!-- DNE (recommend 1093) -->
+
* '''[[Sigma notation]]'''  
* '''[[Area of a rectangle]]''' <!-- Grades 6-12 -->
+
* '''[[Area of a rectangle]]'''  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Continuity]]  
* [[Toolkit Functions]] <!-- 1073-Mod 1.2 -->
+
* [[Toolkit Functions]]  
  
 
||
 
||
Line 658: Line 656:
 
* Use the sum of rectangular areas to approximate the area under a curve.
 
* Use the sum of rectangular areas to approximate the area under a curve.
 
* Use Riemann sums to approximate area.
 
* Use Riemann sums to approximate area.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;12   
+
|Week 12   
  
 
||
 
||
  
<div style="text-align: center;">5.2</div>
+
5.2
  
 
||   
 
||   
Line 674: Line 674:
 
||
 
||
  
* [[Interval Notation|Interval notation]] <!-- 1073-Mod.R -->
+
* [[Interval Notation|Interval notation]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Antiderivatives]]  
* [[The Limit of a Function|Limits of Riemann Sums]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function|Limits of Riemann Sums]]  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Continuity]]  
  
 
||
 
||
Line 688: Line 688:
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Calculate the average value of a function.
 
* Calculate the average value of a function.
 +
 +
  
 
|-
 
|-
  
|Week&nbsp;12/13   
+
|Week 12/13   
  
 
||
 
||
  
<div style="text-align: center;">5.3</div>
+
5.3
  
 
||
 
||
Line 703: Line 705:
 
||
 
||
  
* [[The Derivative as a Function|The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[The Derivative as a Function|The Derivative of a Function]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Antiderivatives]]  
* [[Mean Value Theorem]] <!-- 1214-4.4 -->
+
* [[Mean Value Theorem]]  
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Inverse Functions]]  
  
 
||
 
||
Line 716: Line 718:
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Explain the relationship between differentiation and integration.
 
* Explain the relationship between differentiation and integration.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;13
+
|Week 13
  
 
||
 
||
  
<div style="text-align: center;">5.4</div>
+
5.4
  
 
||   
 
||   
Line 732: Line 736:
 
||
 
||
  
* [[Antiderivatives|Indefinite integrals]]  <!-- 1214-4.10 -->
+
* [[Antiderivatives|Indefinite integrals]]   
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]]  <!-- 1214-5.3 -->
+
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]]   
  
 
||
 
||
Line 741: Line 745:
 
* Use the net change theorem to solve applied problems.
 
* Use the net change theorem to solve applied problems.
 
* Apply the integrals of odd and even functions.
 
* Apply the integrals of odd and even functions.
 +
 +
  
  
Line 746: Line 752:
  
  
|Week&nbsp;14   
+
|Week 14   
  
 
||
 
||
  
<div style="text-align: center;">5.5</div>
+
5.5
  
 
||   
 
||   
Line 758: Line 764:
 
||
 
||
  
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[The Definite Integral|Solving Basic Integrals]]  
* [[The Derivative as a Function|The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[The Derivative as a Function|The Derivative of a Function]]  
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073-R) -->
+
* '''[[Change of Variables]]'''  
  
 
||
 
||
Line 766: Line 772:
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate definite integrals.
 
* Use substitution to evaluate definite integrals.
 +
 +
  
  
Line 771: Line 779:
  
  
|Week&nbsp;14/15   
+
|Week 14/15   
  
 
||
 
||
  
<div style="text-align: center;">5.6</div>
+
5.6
  
 
||   
 
||   
Line 783: Line 791:
 
||
 
||
  
* [[Exponential Functions]] <!-- 1073-8 -->
+
* [[Exponential Functions]]  
* [[Logarithmic Functions]] <!-- 1073-8 -->
+
* [[Logarithmic Functions]]  
* [[Differentiation Rules]] <!-- 1214-5.2 -->
+
* [[Differentiation Rules]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Antiderivatives]]  
  
 
||
 
||
Line 792: Line 800:
 
* Integrate functions involving exponential functions.
 
* Integrate functions involving exponential functions.
 
* Integrate functions involving logarithmic functions.
 
* Integrate functions involving logarithmic functions.
 +
 +
  
 
|-
 
|-
  
  
|Week&nbsp;15   
+
|Week 15   
  
 
||
 
||
  
<div style="text-align: center;">5.7</div>
+
5.7
  
 
||
 
||
Line 808: Line 818:
 
||
 
||
  
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]] <!-- 1093-3.1 and 3.2 -->
+
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]]  
* [[One-to-one functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
+
* [[One-to-one functions|Injective Functions]]  
* [[The Definite Integral|Rules for Integration]] <!-- 1214-5.2 -->
+
* [[The Definite Integral|Rules for Integration]]  
  
 
||
 
||
  
 
* Integrate functions resulting in inverse trigonometric functions.
 
* Integrate functions resulting in inverse trigonometric functions.
+
 
 
|}
 
|}

Revision as of 13:58, 31 March 2023

The textbook for this course is Calculus (Volume 1) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.

Topics List

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

2.2

The Limit of a Function


  • Describe the limit of a function using correct notation.
  • Use a table of values to estimate the limit of a function or to identify when the limit does not exist.
  • Use a graph to estimate the limit of a function or to identify when the limit does not exist.
  • Define one-sided limits and provide examples.
  • Explain the relationship between one-sided and two-sided limits.
  • Describe an infinite limit using correct notation.
  • Define a vertical asymptote.


Week 1/2

2.3


The Limit Laws



  • Recognize the basic limit laws.
  • Use the limit laws to evaluate the limit of a function.
  • Evaluate the limit of a function by factoring.
  • Use the limit laws to evaluate the limit of a polynomial or rational function.
  • Evaluate the limit of a function by factoring or by using conjugates.
  • Evaluate the limit of a function by using the squeeze theorem.
  • Evaluate left, right, and two sided limits of piecewise defined functions.
  • Evaluate limits of the form K/0, K≠0.
  • Establish and use this to evaluate other limits involving trigonometric functions.
Week 2/3

2.4

Continuity


  • Continuity at a point.
  • Describe three kinds of discontinuities.
  • Define continuity on an interval.
  • State the theorem for limits of composite functions and use the theorem to evaluate limits.
  • Provide an example of the intermediate value theorem.


Week 3

4.6

Limits at Infinity and Asymptotes

  • Calculate the limit of a function that is unbounded.
  • Identify a horizontal asymptote for the graph of a function.


Week 3/4

3.1


Defining the Derivative

  • Recognize the meaning of the tangent to a curve at a point.
  • Calculate the slope of a secant line (average rate of change of a function over an interval).
  • Calculate the slope of a tangent line.
  • Find the equation of the line tangent to a curve at a point.
  • Identify the derivative as the limit of a difference quotient.
  • Calculate the derivative of a given function at a point.


Week 4

3.2


The Derivative as a Function

  • Define the derivative function of a given function.
  • Graph a derivative function from the graph of a given function.
  • State the connection between derivatives and continuity.
  • Describe three conditions for when a function does not have a derivative.
  • Explain the meaning of and compute a higher-order derivative.


Week 4/5

3.3


Differentiation Rules

  • State the constant, constant multiple, and power rules.
  • Apply the sum and difference rules to combine derivatives.
  • Use the product rule for finding the derivative of a product of functions.
  • Use the quotient rule for finding the derivative of a quotient of functions.
  • Extend the power rule to functions with negative exponents.
  • Combine the differentiation rules to find the derivative of a polynomial or rational function.
Week 5

3.4


Derivatives as Rates of Change

  • Determine a new value of a quantity from the old value and the amount of change.
  • Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
  • Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
  • Predict the future population from the present value and the population growth rate.
  • Use derivatives to calculate marginal cost and revenue in a business situation.
Week 5

3.5


Derivatives of the Trigonometric Functions

  • Find the derivatives of the sine and cosine function.
  • Find the derivatives of the standard trigonometric functions.
  • Calculate the higher-order derivatives of the sine and cosine.


Week 6

3.6


The Chain Rule

  • State the chain rule for the composition of two functions.
  • Apply the chain rule together with the power rule.
  • Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
  • Recognize and apply the chain rule for a composition of three or more functions.
  • Use interchangeably the Newton and Leibniz Notation for the Chain Rule.


Week 6

3.7

Derivatives of Inverse Functions

  • State the Inverse Function Theorem for Derivatives.
  • Apply the Inverse Function Theorem to find the derivative of a function at a point given its inverse and a point on its graph.
  • Derivatives of the inverse trigonometric functions.


Week 6/7

3.8


Implicit Differentiation

  • Assuming, for example, y is implicitly a function of x, find the derivative of y with respect to x.
  • Assuming, for example, y is implicitly a function of x, and given an equation relating y to x, find the derivative of y with respect to x.
  • Find the equation of a line tangent to an implicitly defined curve at a point.


Week 7

3.9

Derivatives of Exponential and Logarithmic Functions

  • Find the derivative of functions that involve exponential functions.
  • Find the derivative of functions that involve logarithmic functions.
  • Use logarithmic differentiation to find the derivative of functions containing combinations of powers, products, and quotients.


Week 7/8

4.1


Related Rates

  • Express changing quantities in terms of derivatives.
  • Find relationships among the derivatives in a given problem.
  • Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.


Week 8

4.2


Linear Approximations and Differentials

  • Approximate the function value close to the center of the linear approximation using the linearization.
  • Given an expression to be evaluated/approximated, come up with the function and its linearization
  • Understand the formula for the differential; how it can be used to estimate the change in the dependent variable quantity, given the small change in the independent variable quantity.
  • Use the information above to estimate potential relative (and percentage) error


Week 8/9

4.3


Maxima and Minima

  • Know the definitions of absolute and local extrema.
  • Know what a critical point is and locate it (them).
  • Use the Extreme Value Theorem to find the absolute extrema of a continuous function on a closed interval.


Week 9

4.4


Mean Value Theorem

  • Determine if the MVT applies given a function on an interval.
  • Find c in the conclusion of the MVT (if algebraically feasible)
  • Know the first 3 Corollaries of MVT (especially the 3rd)


Week 9

4.5


Derivatives and the Shape of a Graph

  • Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
  • Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
  • Understand the shape of the graph, given the signs of the first and second derivatives.


Week 10

4.7


Applied Optimization Problems


  • Set up a function to be optimized and find the value(s) of the independent variable which provide the optimal solution.


Week 10

4.8


L’Hôpital’s Rule

  • Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
  • Recognize when to apply L’Hôpital’s rule.


Week 11

4.10


Antiderivatives

  • Find the general antiderivative of a given function.
  • Explain the terms and notation used for an indefinite integral.
  • State the power rule for integrals.
  • Use anti-differentiation to solve simple initial-value problems.


Week 11/12

5.1

Approximating Areas

  • Calculate sums and powers of integers.
  • Use the sum of rectangular areas to approximate the area under a curve.
  • Use Riemann sums to approximate area.


Week 12

5.2

The Definite Integral

  • State the definition of the definite integral.
  • Explain the terms integrand, limits of integration, and variable of integration.
  • Explain when a function is integrable.
  • Rules for the Definite Integral.
  • Describe the relationship between the definite integral and net area.
  • Use geometry and the properties of definite integrals to evaluate them.
  • Calculate the average value of a function.


Week 12/13

5.3

The Fundamental Theorem of Calculus

  • Describe the meaning of the Mean Value Theorem for Integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 1.
  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 2.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.


Week 13

5.4

Integration Formulas and the Net Change Theorem

  • Apply the basic integration formulas.
  • Explain the significance of the net change theorem.
  • Use the net change theorem to solve applied problems.
  • Apply the integrals of odd and even functions.



Week 14

5.5

Integration by Substitution

  • Use substitution to evaluate indefinite integrals.
  • Use substitution to evaluate definite integrals.



Week 14/15

5.6

Integrals Involving Exponential and Logarithmic Functions

  • Integrate functions involving exponential functions.
  • Integrate functions involving logarithmic functions.


Week 15

5.7

Integrals Resulting in Inverse Trigonometric Functions

  • Integrate functions resulting in inverse trigonometric functions.